The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals th...The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.展开更多
The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals th...The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.展开更多
文摘The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.
文摘The C-F bond is one of the strongest in organic chemistry. It is responsible for the great stability of perfluoroalkyl and polyfluoroalkyl substances, commonly referred to as “PFAS”, a group of man-made chemicals that include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Thermal stability, surface activity, dielectric characteristics, chemical resistance, and inertness are just a few of the technical advantages that this group has over hydrocarbons, and since the 1950s, these chemicals have been largely utilized in a variety of domestic and industrial endeavors. The hydrophilic and lipophilic nature of this class of chemicals accounts for its uniqueness. Up until today, the chemistry and ecotoxicology of these chemicals continue to emerge. Issues concerning the destructive power of ignorance expedited by an ineffective regulatory institution continue to show that manufacturing chemicals are insufficient without giving serious thought to issues of openness and humanity’s awareness of its own safety. When discussing the nature of humanity and how it can be defined or redefined, it is important to allude to the significance of integrating business with ethics in its various forms. This paper highlights the importance of holding polluters accountable for PFAS contamination cleanup costs while emphasizing the need for chemical manufacturers to test and disclose the health and environmental effects of PFAS compounds. In addition, the sources, types, properties, applications, distribution, toxicological implications, regulations, and analytical methods associated with PFAS (per- and polyfluoroalkyl substances) are explored. The effectiveness of the remedial methods described in this paper needs to be progressively tested while exploring other sustainable approaches.