期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor 被引量:1
1
作者 Bin Zhang Tian-Ci Xie +7 位作者 Zhuang Qin Hao-Peng Li Song Li Wen-Hui Zhao Zi-Yin Chen Jun Xu Elfed Lewis Wei-Min Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期633-639,共7页
The purpose of this article is to explore the cause of the over-response phenomenon of fiber x-ray sensor.The sensor is based on a length of PMMA fiber,whose end is filled with the scintillation material Gd_(2)O_(2)S:... The purpose of this article is to explore the cause of the over-response phenomenon of fiber x-ray sensor.The sensor is based on a length of PMMA fiber,whose end is filled with the scintillation material Gd_(2)O_(2)S:Tb.The Monte Carlo simulation software GEANT4 uses the phase space file provided by the International Atomic Energy Agency(IAEA),by irradiating the fiber x-ray sensor in the water phantom,counting the fluorescence signal of the optical fiber x-ray sensor after propagation through the fiber.In addition,the number of Cerenkov photons propagating through the fiber is also counted.Comparing this article with previous research,we believe that one of the reasons for the over-response of the fiber x-ray sensor is the non-linear response of the deposition energy of the scintillator to the fluorescence.By establishing a region of interest and counting the x-rays in this region,the simulation results show that the counted number of x-rays that may affect the fiber x-ray sensor is the biggest in the area of interest at a water depth of 5 cm.This result is close to the maximum dose point of the experimental and simulated percentage depth dose(PDD) curve of fiber x-ray sensor.Therefore,the second reason of the over-response phenomenon is believed to be fact that the inorganic materials such as Gd_(2)O_(2)S:Tb have larger effective atomic numbers,so the fiber x-ray sensors will cause more collisions with x-ray in a low energy region of 0.1 MeV-1.5 MeV. 展开更多
关键词 fiber x-ray sensors over-response percentage depth dose(PDD) Monte Carlo(MC)simulation
下载PDF
Dosimetric Effects of Thermoplastic Immobilizing Devices on Surface Dose
2
作者 Olivia Adu-Poku Eric Kotei Addison +6 位作者 Cyril Schandorf Francis Hasford Stephen Inkoom Joseph Adom Akosah Kingsley Eunice Arthur Linus Owusu-Agyapong 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2022年第1期12-21,共10页
Thermoplastic immobilizing masks have dosimetric effects on the patient’s skin dose. The thermoplastic percentage depth dose (PDD), equivalent thickness of water for the masks and surface doses were determined. The s... Thermoplastic immobilizing masks have dosimetric effects on the patient’s skin dose. The thermoplastic percentage depth dose (PDD), equivalent thickness of water for the masks and surface doses were determined. The surface dose factors due to the thermoplastic mask was found to be 1.7949, 1.9456, 2.0563, 2.1967, 2.3827, 2.5459 and 2.6565 for field sizes of 5 × 5, 8 × 8, 10 × 10, 12 × 12, 15 × 15, 18 × 18 and 20 × 20 cm<sup>2</sup> respectively which shifted the percentage depth dose curve to lower values. The physical thermoplastic thickness was measured to be between 2.30 and 1.80 mm, and the equivalent thicknesses of water, d<sub>e</sub>, were determined to be between 1.2 and 1.00 mm. This meant that, as the mask thickness decreased, its water equivalent thickness also decreased. The presence of the mask material increased the skin dose to a factor of 1%. The thermoplastic mask factor was also found to be 0.99. 展开更多
关键词 Thermoplastic Mask percentage depth Dose Equivalent Thickness of Water Skin Dose
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部