期刊文献+
共找到996篇文章
< 1 2 50 >
每页显示 20 50 100
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
1
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence Multi-layer perceptron(MLP) Discrete element method FEM-DEM Machine learning
下载PDF
Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems
2
作者 Mustufa Haider Abidi Hisham Alkhalefah Mohamed K.Aboudaif 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期977-997,共21页
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca... The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%. 展开更多
关键词 Smart healthcare systems multilayer perceptron CYBERSECURITY adversarial attack detection Healthcare 4.0
下载PDF
Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data
3
作者 Uddagiri Sirisha Parvathaneni Naga Srinivasu +4 位作者 Panguluri Padmavathi Seongki Kim Aruna Pavate Jana Shafi Muhammad Fazal Ijaz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2301-2330,共30页
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn... Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process. 展开更多
关键词 Fetal health cardiotocography data deep learning dynamic multi-layer perceptron feature engineering
下载PDF
Recommendation System Based on Perceptron and Graph Convolution Network
4
作者 Zuozheng Lian Yongchao Yin Haizhen Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3939-3954,共16页
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio... The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms. 展开更多
关键词 Recommendation system graph convolution network attention mechanism multi-layer perceptron
下载PDF
A Multilayer Perceptron Artificial Neural Network Study of Fatal Road Traffic Crashes
5
作者 Ed Pearson III Aschalew Kassu +1 位作者 Louisa Tembo Oluwatodimu Adegoke 《Journal of Data Analysis and Information Processing》 2024年第3期419-431,共13页
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p... This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions. 展开更多
关键词 Artificial Neural Network Multilayer perceptron Fatal Crash Traffic Safety
下载PDF
基于Perceptron建立某车型焊钉及白车身在线检测体系
6
作者 秦绪军 杨壮壮 赵峪奇 《汽车工艺师》 2024年第1期71-76,共6页
以北京奔驰汽车有限公司206车型为基础,基于Perceptron就螺柱焊钉位置尺寸、车身尺寸和覆盖件尺寸在线自动检测以及相应的精度控制进行了研究,规划并建立焊钉位置尺寸在线测量点76个,普通测量特征1373个测量点;规划并实施焊钉在线测量... 以北京奔驰汽车有限公司206车型为基础,基于Perceptron就螺柱焊钉位置尺寸、车身尺寸和覆盖件尺寸在线自动检测以及相应的精度控制进行了研究,规划并建立焊钉位置尺寸在线测量点76个,普通测量特征1373个测量点;规划并实施焊钉在线测量方案以及后端、Z1和Z2.3在线测量方案;完成在线检测工位测量工装优化改进,达成了基于Perceptron的V206焊钉及白车身在线检测体系建设,并实现了工时和成本的节约。 展开更多
关键词 perceptron 螺柱焊钉检测 在线检测
下载PDF
Automatic Sentimental Analysis by Firefly with Levy and Multilayer Perceptron
7
作者 D.Elangovan V.Subedha 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2797-2808,共12页
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Face... The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy). 展开更多
关键词 Firefly algorithm feature selection feature extraction multi-layer perceptron automatic sentiment analysis
下载PDF
基于Re-Perceptron-CRF的规范类文本分词研究
8
作者 李宝林 刘宇韬 《成都信息工程大学学报》 2023年第3期298-305,共8页
通过Re-Perceptron-CRF组合方法,利用规范类文档特点,对关键词进行切分。分别采取Viterbi、Perceptron、CRF和Re-Perceptron-CRF 4种算法分别对规范类文本进行分词研究。具体为基于句法分析对规范类文本使用正则表达式进行标准化处理,... 通过Re-Perceptron-CRF组合方法,利用规范类文档特点,对关键词进行切分。分别采取Viterbi、Perceptron、CRF和Re-Perceptron-CRF 4种算法分别对规范类文本进行分词研究。具体为基于句法分析对规范类文本使用正则表达式进行标准化处理,得到适合分析的预处理文本,并通过Perceptron与CRF的双重算法返回各自的最优结果。实验表明,Re-Perceptron-CRF算法明显提高分词效果,在准确率和召回率上均有良好表现,其准确率和召回率分别达到94.36%和97.02%。该方法为规范类文本中文分词相关工作提供一定的研究思路,为后续应用提供好的数据支撑。但由于数据量较小,该方法仅适用于特定领域,如建筑检测领域。 展开更多
关键词 管理科学与工程 文本分析 中文分词 Re-perceptron-CRF 词性标注
下载PDF
非语言信息增强和对比学习的多模态情感分析模型
9
作者 刘佳 宋泓 +2 位作者 陈大鹏 王斌 张增伟 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3372-3381,共10页
因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充... 因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充分考虑情感的动态变化,导致情感分析性能不佳。针对这一问题,该文提出非语言信息增强和对比学习的多模态情感分析网络模型。首先,使用长程文本信息去促使模型学习音频和视频在长时间序列中的动态变化,然后,通过门控机制消除模态间的冗余信息和语义歧义。最后,使用对比学习加强模态间的交互,提升模型的泛化性。实验结果表明,在数据集CMU-MOSI上,该模型将皮尔逊相关系数(Corr)和F1值分别提高了3.7%和2.1%;而在数据集CMU-MOSEI上,该模型将“Corr”和“F1值”分别提高了1.4%和1.1%。因此,该文提出的模型可以有效利用模态间的交互信息,并去除信息冗余。 展开更多
关键词 多模态情感分析 多模态融合 信息增强 多层感知器
下载PDF
基于CT平扫影像组学特征在预测胸腺上皮性肿瘤WHO简化病理分型中的价值
10
作者 陈杰 洪悦 王艳 《中国CT和MRI杂志》 2024年第1期71-73,共3页
目的探讨基于CT平扫的影像组学特征在预测胸腺上皮性肿瘤WHO简化病理分型中的应用价值。方法回顾性收集2010年1月-2022年3月由病理结果证实的胸腺上皮肿瘤(TETS)患者共57例,通过TETS的WHO简化病理分型,分为低危组(A、AB、B1型)23例、高... 目的探讨基于CT平扫的影像组学特征在预测胸腺上皮性肿瘤WHO简化病理分型中的应用价值。方法回顾性收集2010年1月-2022年3月由病理结果证实的胸腺上皮肿瘤(TETS)患者共57例,通过TETS的WHO简化病理分型,分为低危组(A、AB、B1型)23例、高危组(B2、B3、C型)34例,并按照8:2的比例,随机分成训练集和测试集。每个病灶均由两名放射科医生经过协商后,利用ITK-SNAP软件对兴趣区(ROI)进行勾画。使用Python v3.67提取放射组学特征,并使用Spearman相关系数和LASSO特征选择方法进行降维和筛选。在训练集中,应用支持向量机(SVM)、多层感知机(MLP)和逻辑回归(LR)构建术前诊断预测模型。采用受试者工作特征曲线(ROC)评估预测效果,并通过内部测试集验证预测模型。结果共提取了1649个影像组学特征参数,经过Spearman相关系数筛选得到221个差异特征,并通过LASSO方法将其降维至12个组学特征。在测试集中,基于SVM、MLP和LR构建的术前预测模型分别表现出AUC值为0.800、0.868和0.971,其中LR模型具有更好的预测效果。结论基于CT平扫影像组学特征构建的SVM、MLP和LR模型在预测胸腺上皮性肿瘤WHO简化病理分型方面展现出较好的预测潜力,其中LR模型具有更好的预测效果。 展开更多
关键词 胸腺上皮肿瘤 WHO病理分型 影像组学 支持向量机 多层感知机 逻辑回归
下载PDF
混沌自适应非洲秃鹫优化算法训练多层感知器
11
作者 申晋祥 鲍美英 +1 位作者 张景安 周建慧 《计算机工程与设计》 北大核心 2024年第2期546-552,共7页
针对训练多层感知器(MLP)时,算法对初始值敏感、易陷入局部最优和收敛速度慢等问题,对新型启发式算法非洲秃鹫优化算法提出改进算法IAVOA。在初始化种群时引入Logistic混沌映射,增加种群的多样性;对最优秃鹫和次优秃鹫增加自适应权重系... 针对训练多层感知器(MLP)时,算法对初始值敏感、易陷入局部最优和收敛速度慢等问题,对新型启发式算法非洲秃鹫优化算法提出改进算法IAVOA。在初始化种群时引入Logistic混沌映射,增加种群的多样性;对最优秃鹫和次优秃鹫增加自适应权重系数,自动调整这两类秃鹫对普通秃鹫的引导作用;IAVOA用于MLP的训练,采用均方误差的平均值作为适应度函数寻找MLP的连接权重和偏差的最佳组合。选取4个不同复杂度的分类数据集,比较IAVOA算法与现有启发式算法对MLP训练后,MLP对数据分类的性能,仿真结果表明,IAVOA算法训练的MLP在数据分类准确率、全局搜索能力、收敛速度和稳定性方面均具有良好的性能。 展开更多
关键词 优化 分类 非洲秃鹫算法 多层感知器 前馈神经网络 自适应系数 收敛
下载PDF
基于金字塔池化网络的质子交换膜燃料电池气体扩散层组分推理方法
12
作者 王虎 尹泽泉 +6 位作者 王雯婕 黄笠舟 方宁宁 隋俊友 张加乐 张锐明 隋邦傑 《重庆大学学报》 CAS CSCD 北大核心 2024年第1期84-92,共9页
针对质子交换膜燃料电池气体扩散层(gas diffusion layer composition,GDL)形貌划分与制备工艺改进问题,提出了一种基于金字塔池化网络(pyramid scene parsing network,PSPNet)与多层感知器(multi-layer perception,MLP)的气体扩散层组... 针对质子交换膜燃料电池气体扩散层(gas diffusion layer composition,GDL)形貌划分与制备工艺改进问题,提出了一种基于金字塔池化网络(pyramid scene parsing network,PSPNet)与多层感知器(multi-layer perception,MLP)的气体扩散层组分识别与比例推理方法:首先将带标签的气体扩散层扫描电镜(scanning electron microscope,SEM)图片输入神经网络,得到特征图;得到的图像特征层进入金字塔池化模块后,获取SEM图像的深层和浅层特征;随后将深层和浅层特征图层融合输入全卷积网络(fully convolutional network,FCN)模块,得到预测图像;最后统计各个组分上的像素点比例,通过MLP完成组分比例推理。结果表明:所提方法组分识别像素准确率达81.24%;在5%偏差范围内,比例推理准确率为88.89%。该方法解决了气体扩散层多组分无法区分、比例无法获知的问题,可有效应用于气体扩散层的质检、数值重构以及制备工艺改进。 展开更多
关键词 质子交换膜燃料电池 气体扩散层制备 扫描电镜 人工智能 金字塔池化网络 多层感知器
下载PDF
SSA-MLP模型在岩质边坡稳定性预测中的应用
13
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1795-1803,共9页
岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Sear... 岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Search Algorithm,SSA)改进多层感知器(Multi-Layer Perceptron,MLP)的神经网络模型,并用于边坡稳定性预测、指标敏感性分析及参数反演。其次,将收集的1085组岩质边坡的几何参数和H B准则参数等作为输入变量,极限平衡理论Bishop法求解的安全系数作为输出变量,对SSA MLP模型进行训练学习和性能评估。最后,将该模型运用于25个边坡实例,验证模型的有效性。结果显示,该模型收敛速度快、精度高,为边坡稳定性分析和参数量化提供了一种新思路。 展开更多
关键词 安全工程 边坡稳定性 HOEK-BROWN准则 多层感知器(MLP)神经网络 麻雀搜索算法 参数反演
下载PDF
三种机器学习模型用于空气质量等级预测的比较研究——以保定市为例
14
作者 刘婕 郝舒欣 +2 位作者 万红燕 刘悦 徐东群 《环境卫生学杂志》 2024年第3期264-269,272,共7页
目的 利用支持向量机(support vector machine, SVM)、随机森林(random forest, RF)和多层感知器(multilayer perceptron, MLP)三种机器学习方法分别构建保定市未来三日空气质量等级预测模型,通过对参数调优和预测结果比较选择三种模型... 目的 利用支持向量机(support vector machine, SVM)、随机森林(random forest, RF)和多层感知器(multilayer perceptron, MLP)三种机器学习方法分别构建保定市未来三日空气质量等级预测模型,通过对参数调优和预测结果比较选择三种模型中的最佳模型。方法 基于保定市2014—2022年的空气污染物日均浓度监测数据和同期气象数据,采用SVM、RF和MLP三种机器学习模型,利用前四日数据为未来三日分别构建了每日的空气质量等级预测模型并评估特征变量的重要性。对模型参数进行调优,采取十折交叉验证法进行验证,通过准确率和AUC等指标来评估模型性能。结果 SVM模型未来三日准确率分别为69.8%、63.5%、62.3%,AUC分别为77.4、70.8、70.7;RF模型未来三日准确率分别为75.9%、68.2%、67.1%,AUC分别为0.84、0.74、0.72;MLP模型未来三日准确率分别为73.2%、66.4%、65.7%,AUC为0.83、0.74、0.73,综合对比RF模型表现最优;空气质量特征变量重要性高于气象因素特征变量。结论 通过对比研究,RF机器学习模型能够相对有效地预测未来一日空气污染等级,并提供空气质量等级预警。 展开更多
关键词 机器学习 空气污染 支持向量机 随机森林 多层感知器
下载PDF
基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法
15
作者 舒胜文 陈阳阳 +3 位作者 张梓奇 方舒绮 王国彬 曾静岚 《电网技术》 EI CSCD 北大核心 2024年第2期750-759,共10页
利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行... 利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法。首先,构建了由绝缘水平、负载能力、抗短路能力、能效等级和调压能力五个能力构成的变压器运行状态画像体系;然后,融合知识图谱(knowledge graph,KG)与多层感知机(multilayer perceptron,MLP),建立了一种变压器运行状态画像分析模型;最后,基于某地区1368台110kV变压器的实际运行数据,开展了变压器运行状态画像的实例分析,并与随机森林(random forest,RF)和支持向量机(support vector machine,SVM)方法的画像分析结果进行对比。研究结果表明,所提方法对变压器运行状态画像的准确率达到96.35%,优于RF算法(准确率89%)和SVM算法(准确率77%),为电力变压器的运行状态评价提供了一种新思路。 展开更多
关键词 电力变压器 运行状态 画像构建 多维能力 知识图谱 多层感知机
下载PDF
基于改进Xception网络的验证码识别
16
作者 林开司 张露 《福建技术师范学院学报》 2024年第2期26-31,共6页
验证码是一种公共自动化程序,用于区分用户和计算机.为了从网站大量获取信息,机器必须自动识别网站的验证码.为了自动识别验证码,研究基于深度学习的验证码识别,提出基于Xception网络和MLP的验证码识别方法.先利用Xception提取验证码特... 验证码是一种公共自动化程序,用于区分用户和计算机.为了从网站大量获取信息,机器必须自动识别网站的验证码.为了自动识别验证码,研究基于深度学习的验证码识别,提出基于Xception网络和MLP的验证码识别方法.先利用Xception提取验证码特征,再经MLP标定不同权重,最终得到网络的最优权重分布.这种端到端的深度学习具有从输入到输出的预测,可以省去预处理、字符分割等步骤.经对不同验证码数据集的测试,该算法识别正确率在95%以上. 展开更多
关键词 验证码 Xception网络 多层感知器 深度学习
下载PDF
基于多层感知机技术的地铁盾构施工参数预测 被引量:2
17
作者 李文乾 吴云桓 +3 位作者 吴兢业 陈治怀 谢森林 胡安峰 《深圳大学学报(理工版)》 CSCD 北大核心 2024年第1期50-57,共8页
在地铁工程建设中,盾构法施工技术已经得到了广泛的应用,盾构掘进参数的合理预测对提高施工安全性及降低操作难度具有较大实际意义.以中国杭州机场快线地铁隧道某标段为工程背景,以隧道直径范围内土层摩擦角、黏聚力、压缩模量、重度以... 在地铁工程建设中,盾构法施工技术已经得到了广泛的应用,盾构掘进参数的合理预测对提高施工安全性及降低操作难度具有较大实际意义.以中国杭州机场快线地铁隧道某标段为工程背景,以隧道直径范围内土层摩擦角、黏聚力、压缩模量、重度以及隧道顶部埋深、盾构机预设刀盘转速、推进速度作为输入,以盾构施工时的注浆量、注浆压力、出土量、总推力和刀盘扭矩为输出,建立基于多层感知机的盾构掘进参数预测模型.通过对比不同超参数组合情况下的模型在数据集上的预测表现,挑选出适合于该工程盾构施工参数的预测模型.使用实测数据对模型预测效果进行验证,预测值与实测数据总体变化规律一致,平均误差在20%以内.建立的多层感知机模型预测结果较为合理,具有较好的预测精度,可用于复合地层条件下同类型盾构掘进参数的预测. 展开更多
关键词 岩土工程 多层感知机 盾构掘进参数 复合地层 预测模型 K折验证
下载PDF
基于多层感知机和近端策略优化的滚动轴承故障诊断方法 被引量:1
18
作者 吕渊 张西良 《轴承》 北大核心 2024年第2期89-94,共6页
针对基于价值函数的强化学习故障诊断方法存在无法应对随机策略以及策略微弱变化导致维度爆炸的问题,提出了基于多层感知机和近端策略优化(MLP-PPO)的滚动轴承故障诊断方法。首先,基于多层感知机网络构建强化学习智能体;然后,基于策略... 针对基于价值函数的强化学习故障诊断方法存在无法应对随机策略以及策略微弱变化导致维度爆炸的问题,提出了基于多层感知机和近端策略优化(MLP-PPO)的滚动轴承故障诊断方法。首先,基于多层感知机网络构建强化学习智能体;然后,基于策略网络和价值网络的框架构建与智能体交互的故障诊断环境,充分提取故障特征;最后,采用策略梯度优化方法拟合故障诊断目标函数,通过近端策略优化方法寻找故障诊断最优策略。通过XJTU-SY滚动轴承数据集进行试验的结果表明,相对于SVM,CNN,DQN等方法,基于MLP-PPO的故障诊断方法的准确率更高(约96%)。 展开更多
关键词 滚动轴承 故障诊断 强化学习 感知机 策略函数 智能体
下载PDF
融合多层感知机和多项式拟合的大数据平台风机故障诊断
19
作者 吴青云 孟颖琪 +10 位作者 高景辉 何信林 高奎 赵晖 谭祥帅 郭云飞 牛利涛 赵如宇 李昭 姚智 蔺奕存 《热力发电》 CAS CSCD 北大核心 2024年第1期145-153,共9页
为了提高火电厂送引风机运行的全程安全化、故障诊断准确化、生产收益长期化,将风险问题前置是提升机组运行安全性的关键。基于此,提出了融合多层感知机和多项式拟合的大数据平台风机故障诊断模型。采用多层感知机和多项式拟合建模技术... 为了提高火电厂送引风机运行的全程安全化、故障诊断准确化、生产收益长期化,将风险问题前置是提升机组运行安全性的关键。基于此,提出了融合多层感知机和多项式拟合的大数据平台风机故障诊断模型。采用多层感知机和多项式拟合建模技术建立风机预警模型,并将模型部署在大数据平台中,能及时发现风机运行期间人工难以发现的异常。采用数据挖掘、机理分析和特征值知识库相结合的方法,挖掘风机失速的参数边界信息,精准化配置各种工况的风机失速边界条件并绘制失速边界工况图,然后结合正常运行工况得出预警失速区间,最终建立覆盖风机全工况的故障诊断模型。利用大数据平台对风机运行数据全覆盖、全流通、全维护的优势,构建了基于大数据平台的风机智能巡盘模型体系,实现以智能巡盘模型代替运行人员对风机运行状态进行定期巡盘监视和诊断,达到风机故障的准确安全诊断、故障发生率最低化及人员复用率最大化的效果。 展开更多
关键词 大数据平台 风机 故障诊断 多层感知机 多项式拟合
下载PDF
融合多源海洋大地测量数据的南海海底地形多层感知机反演
20
作者 周帅 刘新 +5 位作者 李真 祝程程 袁佳佳 李静静 郭金运 孙和平 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第4期1368-1382,共15页
本文融合SIO(Scripps Institution of Oceanography)发布的垂线偏差、重力异常和垂直重力梯度数据及NCEI(National Centers for Environmental Information)发布的船载测深数据,利用多层感知机神经网络(Multi-Layer Perceptron,MLP)建... 本文融合SIO(Scripps Institution of Oceanography)发布的垂线偏差、重力异常和垂直重力梯度数据及NCEI(National Centers for Environmental Information)发布的船载测深数据,利用多层感知机神经网络(Multi-Layer Perceptron,MLP)建立南海海域(108°E—121°E,6°N—23°N)分辨率为1'×1'的海底地形模型(MLP_Depth).首先,将642716个船载测深控制点的位置信息与周围4'×4'格网点处的地球重力信息(垂线偏差、重力异常、垂直重力梯度)作为输入数据,将船载测深控制点处实测水深值作为输出数据,训练MLP神经网络模型,训练结束时决定系数R2为99%,平均绝对误差MAE为39.33 m.然后,将研究区域内1'×1'格网正中心点处的输入数据输入于MLP模型中,可得格网正中心点处的预测海深值.最后,根据预测海深值建立研究区域范围内分辨率为1'×1'的MLP_Depth模型.将MLP_Depth模型预测水深与160679个检核点处实测水深对比,其差值的标准差STD(75.38 m)、平均绝对百分比误差MAPE(5.89%)与平均绝对误差MAE(42.91 m)皆优于GEBCO_2021模型、topo_23.1模型、ETOPO1模型与检核点实测水深差值的STD(108.88 m、113.41 m、229.67 m)、MAPE(6.11%、6.94%、18.37%)与MAE(47.33 m、52.24 m、130.08 m).同时,为了研究不同区域内利用该方法建立的海底地形模型的精度,本文在研究区域内分别建立了A、B区域的海底地形模型(MLP_Depth_A、MLP_Depth_B).经过验证得:MLP_Depth_A、MLP_Depth_B相比于MLP_Depth模型具有更高的精度,更能反应海底地形的变化趋势. 展开更多
关键词 多层感知机 海底地形 南海 垂线偏差 重力异常 垂直重力梯度
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部