The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact(shortly, PM-compact), if its perfect matching polytope...The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact(shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.11101383,11271338 and 11201432
文摘The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact(shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph.