In the past twenty years, electromagnetic metamaterials represented by left-handed metamaterials(LHMs) have attracted considerable attention due to the unique properties such as negative refraction, perfect lens, an...In the past twenty years, electromagnetic metamaterials represented by left-handed metamaterials(LHMs) have attracted considerable attention due to the unique properties such as negative refraction, perfect lens, and electromagnetic cloaks. In this paper, we present a comprehensive review of our group's work on metamaterials and metasurfaces. We present several types of LHMs and chiral metamaterials. As a two-dimensional equivalent of bulk three-dimensional metamaterials, metasurfaces have led to a myriad of devices due to the advantages of lower profile, lower losses, and simpler to fabricate than bulk three-dimensional metamaterials. We demonstrate the novel microwave metadevices based on metamaterials and metasurfaces: perfect absorbers and microwave patch antennas, including novel transmission line antennas,high gain resonant cavity antennas, wide scanning phased array antennas, and circularly polarized antennas.展开更多
A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GH...A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes.展开更多
Coherent perfect absorption provides a method of light-controlling-light and has practical applications in optical communications. Recently, a cavity-based nonlinear perfect photon absorption extends the coherent perf...Coherent perfect absorption provides a method of light-controlling-light and has practical applications in optical communications. Recently, a cavity-based nonlinear perfect photon absorption extends the coherent perfect absorber(CPA)beyond the linear regime. As nanowire-based system is a more competitive candidate for full-optical device, we introduce a nonlinear CPA in the single two-level atom–nanowires coupling system in this work. Nonlinear input–output relations are derived analytically, and three contributions of atomic saturation nonlinearity are explicit. The consociation of optical nonlinearity and destructive interference makes it feasible to fabricate a nonlinear monoatomic CPA. Our results also indicate that a nonlinear system may work linearly even when the incoming lights are not weak any more. Our findings show promising applications in full-optical devices.展开更多
We theoretically propose a narrowband perfect absorber metasurface(PAMS) based on surface phonon polaritons in the terahertz range. The PAMS has unit cell consisting of a silver biarc on the top, a thin polar-dielectr...We theoretically propose a narrowband perfect absorber metasurface(PAMS) based on surface phonon polaritons in the terahertz range. The PAMS has unit cell consisting of a silver biarc on the top, a thin polar-dielectric in the middle and a silver layer at the bottom. The phonon polaritons are excited at the interface between the silver biarc and the polar dielectric, and enhance the absorption of the PAMS. The absorption peak is at 36.813 μm and the full width half maximum(FWHM) is nearly 36 nm, independent of the polarization and incidence angle. The electric fields are located at the split of the biarc silver layer and the quality factor Q is 1150. The FWHM decreases with the decreasing split width. When the thickness of the bottom layer is larger than 50 nm, the narrow band and high absorption are insensitive to the thickness of those layers. The designed absorber may have useful applications in terahertz spectra such as energy harvesting, thermal emitter, and sensing.展开更多
Equipped with multiple and unique features,a terahertz absorber exhibits great potential for use in the development of communication,military,and other fields where achieving perfect broadband absorption has always be...Equipped with multiple and unique features,a terahertz absorber exhibits great potential for use in the development of communication,military,and other fields where achieving perfect broadband absorption has always been a challenge.We present a metamaterial terahertz(THz)absorber comprising a cross-dipole patch,four symmetric square patches and an asymmetric open-loop patch with a good perfect absorption rate for TE and TM polarizations.The average absorption of more than 96%occurs in the frequency range from 2.4 THz to3.8 THz,in which the absorptance peak can reach 99.9%,as indicated by simulated results.Our design has broad potential applications in THz couplers,as well as in fields like biology and security.展开更多
We fabricate a three-layer metamaterial of metal patterns/dielectric/metal films. The optical properties associated with Fano resonance of the metamaterials are investigated experimentally and theoretically. The resul...We fabricate a three-layer metamaterial of metal patterns/dielectric/metal films. The optical properties associated with Fano resonance of the metamaterials are investigated experimentally and theoretically. The results indicate that the introduction of Fano resonance due to symmetry breaking leads to a much wider absorption range. Furthermore, the amplitude and phase of reflection can be modulated effectively by adjusting various free parameters using the proposed structure.展开更多
The broadband metamaterial perfect absorber has been extensively studied due to its excellent characteristics and promising application prospect.In this work a solar broadband metamaterial perfect absorber is proposed...The broadband metamaterial perfect absorber has been extensively studied due to its excellent characteristics and promising application prospect.In this work a solar broadband metamaterial perfect absorber is proposed based on the structure of the germanium(Ge)cone array and the indium arsenide(InAs)dielectric film on the gold(Au)substrate.The results show that the absorption covers the whole ultraviolet-visible and near-infrared range.For the case of A>99%,the absorption bandwidth reaches up to 1230 nm with a wavelength range varied from 200 nm to 1430 nm.The proposed absorber is able to absorb more than 98.7%of the solar energy in a solar spectrum from 200 nm to 3000 nm.The electromagnetic dipole resonance and the high-order modes of the Ge cone couple strongly to the incident optical field,which introduces a strong coupling with the solar radiation and produces an ultra-broadband absorption.The absorption spectrum can be feasibly manipulated via tuning the structural parameters,and the polarization insensitivity performance is particularly excellent.The proposed absorber can possess wide applications in active photoelectric effects,thermion modulators,and photoelectric detectors.展开更多
As a two-dimensional(2D)material,monolayer MoS2which limits its optical applications has a low absorption efficiency.In this paper,we propose a three-band perfect metamaterial absorber in the visible light range based...As a two-dimensional(2D)material,monolayer MoS2which limits its optical applications has a low absorption efficiency.In this paper,we propose a three-band perfect metamaterial absorber in the visible light range based on monolayer MoS_(2).The peak absorptivity of the structure at each resonance wavelength is nearly perfect,moreover,the light absorption of monolayer MoS2is obviously enhanced at the three resonant wavelengths.The dielectric–dielectric–metal structure we designed produces the coupling of Fabry–Perot resonance and high-order diffraction guided-mode resonance at different absorption peaks,which has been proved by the slab waveguide theory.In addition,the multi-modal absorption phenomenon is explained by extracting the equivalent impedance.The results show that we can adjust the absorption peak wavelength by regulating the parameters of the structure.This structure not only provides an idea for enhancing the interaction between light and two-dimensional materials but also has potential applications for optical detection devices.展开更多
To achieve the enhancement and manipulation of light absorption in graphene within the visible and near infrared regions, a design consists of high-contrast gratings and two evanescently coupled slabs with graphene mo...To achieve the enhancement and manipulation of light absorption in graphene within the visible and near infrared regions, a design consists of high-contrast gratings and two evanescently coupled slabs with graphene monolayer is demonstrated. The operation principle and design process of the proposed structure are analyzed using the coupled mode theory, which is confirmed by the rigorous coupled wave analysis. It is proved that the absorptance of graphene monolayer can be greatly enhanced to unity. The thickness of grating and slab layers can significantly change the line width and resonant mode position in the absorption spectra. Furthermore, high tunability in amplitude and bandwidth of the absorption spectra can be achieved by controlling the structural parameters of the hybrid structure. The proposed devices could be efficiently exploited as tunable and selective absorbers, and could be allowed to realize other two-dimensional materials-based selective photo-detectors.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this p...The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.展开更多
Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equat...Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.展开更多
The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze...The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling.展开更多
A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly t...A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.展开更多
The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yield...The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yields a robust Absorbing Boundary Condition(ABC) independent of the angle of incidence and the frequency of outgoing waves. In this paper, the principle of the PML technique is briefly presented. Then some problems in the application and their settlements are discussed emphatically. Finally three numerical tests and a measured result are devoted to examine the accuracy and effectiveness of this approach.展开更多
具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74...具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74 nm的吸收峰宽。这些吸收谱带来自于表面晶格模式和三个表面等离激元极化子模式。此外,这些模式的谱峰对超构材料几何外形和环境介质光学参数的变化敏感,从而在可见光-近红外范围内可以被调控。用于折射率传感时,其具有347 nm每折射率单位的灵敏度,Figure of Merit达到469。这些特性令这一材料适用于光学滤波器和折射率传感器等用途。展开更多
We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect...We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×10~8W∕m^2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers.展开更多
In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal(1 DPC) separated by a dielectri...In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal(1 DPC) separated by a dielectric. Due to the excitation of optical Tamm states(OTSs) at the interface between the graphene and 1 DPC, a strong absorption phenomenon occurs induced by the coupling of the incident light and OTSs. Although the perfect absorption produced by a metal–distributed Bragg reflector structure has been researched extensively, it is generally at a fixed frequency and not tunable. Here, we show that the perfect absorption at terahertz frequency not only can be tuned to different frequencies but also exhibits a high absorption over a wide angle range. In addition,the absorption of the proposed structure is insensitive to the polarization, and multichannel absorption can berealized by controlling the thickness of the top layer.展开更多
In this paper, we propose a methodology to maximize the absorption bandwidth of a metal-insulator-metal(MIM) based absorber. The proposed structure is made of a Cr-Al_2O_3-Cr multilayer design. At the initial step,the...In this paper, we propose a methodology to maximize the absorption bandwidth of a metal-insulator-metal(MIM) based absorber. The proposed structure is made of a Cr-Al_2O_3-Cr multilayer design. At the initial step,the optimum MIM planar design is fabricated and optically characterized. The results show absorption above 0.9 from 400 nm to 850 nm. Afterward, the transfer matrix method is used to find the optimal condition for the perfect light absorption in an ultra-broadband frequency range. This modeling approach predicts that changing the filling fraction of the top Cr layer can extend light absorption toward longer wavelengths. We experimentally proved that the use of proper top Cr thickness and annealing temperature leads to a nearly perfect light absorption from 400 nm to 1150 nm, which is much broader than that of a planar design. Therefore, while keeping the overall process lithography-free, the absorption functionality of the design can be significantly improved. The results presented here can serve as a beacon for future performance-enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674267,51272215,11874301,and 11204241)the National Basic Research Program of China(Grant No.2012CB921503)+2 种基金the National Aerospace Science Foundation of China(Grant No.2016ZF53061)the Fundamental Research Funds for the Central Universities,China(Grant No.3102017jghk02004)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1009)
文摘In the past twenty years, electromagnetic metamaterials represented by left-handed metamaterials(LHMs) have attracted considerable attention due to the unique properties such as negative refraction, perfect lens, and electromagnetic cloaks. In this paper, we present a comprehensive review of our group's work on metamaterials and metasurfaces. We present several types of LHMs and chiral metamaterials. As a two-dimensional equivalent of bulk three-dimensional metamaterials, metasurfaces have led to a myriad of devices due to the advantages of lower profile, lower losses, and simpler to fabricate than bulk three-dimensional metamaterials. We demonstrate the novel microwave metadevices based on metamaterials and metasurfaces: perfect absorbers and microwave patch antennas, including novel transmission line antennas,high gain resonant cavity antennas, wide scanning phased array antennas, and circularly polarized antennas.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331005,11204378,11274389,11304393,and 61302023)the Aviation Science Foundation of China(Grant Nos.20132796018 and 20123196015)+2 种基金the Natural Science Foundation for Post-Doctoral Scientists of China(Grant Nos.2013M532131 and 2013M532221)the Natural Science Foundation of Shaanxi Province,China(Grant No.2013JM6005)the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China(Grant No.201242)
文摘A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11864018 and 11574229)Scientific Research Foundation of the Education Department of Jiangxi Province of China(Grant No.GJJ170645)Doctor Startup Fund of the Natural Science of Jinggangshan University,China(Grant No.JZB16003)
文摘Coherent perfect absorption provides a method of light-controlling-light and has practical applications in optical communications. Recently, a cavity-based nonlinear perfect photon absorption extends the coherent perfect absorber(CPA)beyond the linear regime. As nanowire-based system is a more competitive candidate for full-optical device, we introduce a nonlinear CPA in the single two-level atom–nanowires coupling system in this work. Nonlinear input–output relations are derived analytically, and three contributions of atomic saturation nonlinearity are explicit. The consociation of optical nonlinearity and destructive interference makes it feasible to fabricate a nonlinear monoatomic CPA. Our results also indicate that a nonlinear system may work linearly even when the incoming lights are not weak any more. Our findings show promising applications in full-optical devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204056)Harbin Normal University Master’s Innovation Project(Grant Nos.HSDSSCX2018-77 and HSDSSCX2018-79)+2 种基金Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology)Ministry of Education,China(Grant No.KF20171110)Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2019A028).
文摘We theoretically propose a narrowband perfect absorber metasurface(PAMS) based on surface phonon polaritons in the terahertz range. The PAMS has unit cell consisting of a silver biarc on the top, a thin polar-dielectric in the middle and a silver layer at the bottom. The phonon polaritons are excited at the interface between the silver biarc and the polar dielectric, and enhance the absorption of the PAMS. The absorption peak is at 36.813 μm and the full width half maximum(FWHM) is nearly 36 nm, independent of the polarization and incidence angle. The electric fields are located at the split of the biarc silver layer and the quality factor Q is 1150. The FWHM decreases with the decreasing split width. When the thickness of the bottom layer is larger than 50 nm, the narrow band and high absorption are insensitive to the thickness of those layers. The designed absorber may have useful applications in terahertz spectra such as energy harvesting, thermal emitter, and sensing.
文摘Equipped with multiple and unique features,a terahertz absorber exhibits great potential for use in the development of communication,military,and other fields where achieving perfect broadband absorption has always been a challenge.We present a metamaterial terahertz(THz)absorber comprising a cross-dipole patch,four symmetric square patches and an asymmetric open-loop patch with a good perfect absorption rate for TE and TM polarizations.The average absorption of more than 96%occurs in the frequency range from 2.4 THz to3.8 THz,in which the absorptance peak can reach 99.9%,as indicated by simulated results.Our design has broad potential applications in THz couplers,as well as in fields like biology and security.
基金Supported by the National Natural Science Foundation of China under Grant No 11304002the Natural Science Foundation of Education Bureau of Anhui Province under Grant No KJ2013A136the Natural Science Foundation of Anhui Province under Grant No 1208085MA07
文摘We fabricate a three-layer metamaterial of metal patterns/dielectric/metal films. The optical properties associated with Fano resonance of the metamaterials are investigated experimentally and theoretically. The results indicate that the introduction of Fano resonance due to symmetry breaking leads to a much wider absorption range. Furthermore, the amplitude and phase of reflection can be modulated effectively by adjusting various free parameters using the proposed structure.
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2018A030313854)the Science and Technology Program of Guangzhou City,China(Grant No.2019050001).
文摘The broadband metamaterial perfect absorber has been extensively studied due to its excellent characteristics and promising application prospect.In this work a solar broadband metamaterial perfect absorber is proposed based on the structure of the germanium(Ge)cone array and the indium arsenide(InAs)dielectric film on the gold(Au)substrate.The results show that the absorption covers the whole ultraviolet-visible and near-infrared range.For the case of A>99%,the absorption bandwidth reaches up to 1230 nm with a wavelength range varied from 200 nm to 1430 nm.The proposed absorber is able to absorb more than 98.7%of the solar energy in a solar spectrum from 200 nm to 3000 nm.The electromagnetic dipole resonance and the high-order modes of the Ge cone couple strongly to the incident optical field,which introduces a strong coupling with the solar radiation and produces an ultra-broadband absorption.The absorption spectrum can be feasibly manipulated via tuning the structural parameters,and the polarization insensitivity performance is particularly excellent.The proposed absorber can possess wide applications in active photoelectric effects,thermion modulators,and photoelectric detectors.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43010000)the National Natural Science Foundation of China(Grant Nos.61835011 and 12075244)+1 种基金Key Research Projects of the Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC004)the National Key Research and Development Program of China(Grant No.2020YFB2206103).
文摘As a two-dimensional(2D)material,monolayer MoS2which limits its optical applications has a low absorption efficiency.In this paper,we propose a three-band perfect metamaterial absorber in the visible light range based on monolayer MoS_(2).The peak absorptivity of the structure at each resonance wavelength is nearly perfect,moreover,the light absorption of monolayer MoS2is obviously enhanced at the three resonant wavelengths.The dielectric–dielectric–metal structure we designed produces the coupling of Fabry–Perot resonance and high-order diffraction guided-mode resonance at different absorption peaks,which has been proved by the slab waveguide theory.In addition,the multi-modal absorption phenomenon is explained by extracting the equivalent impedance.The results show that we can adjust the absorption peak wavelength by regulating the parameters of the structure.This structure not only provides an idea for enhancing the interaction between light and two-dimensional materials but also has potential applications for optical detection devices.
基金Supported by the National Natural Science Foundation of China under Grant No 41675154the Six Major Talent Peak Expert of Jiangsu Province under Grant No 2015-XXRJ-014the Jiangsu 333 High-Level Talent Cultivation Program under Grant No BRA2016425
文摘To achieve the enhancement and manipulation of light absorption in graphene within the visible and near infrared regions, a design consists of high-contrast gratings and two evanescently coupled slabs with graphene monolayer is demonstrated. The operation principle and design process of the proposed structure are analyzed using the coupled mode theory, which is confirmed by the rigorous coupled wave analysis. It is proved that the absorptance of graphene monolayer can be greatly enhanced to unity. The thickness of grating and slab layers can significantly change the line width and resonant mode position in the absorption spectra. Furthermore, high tunability in amplitude and bandwidth of the absorption spectra can be achieved by controlling the structural parameters of the hybrid structure. The proposed devices could be efficiently exploited as tunable and selective absorbers, and could be allowed to realize other two-dimensional materials-based selective photo-detectors.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金This research was supported by Natural Science Foundation of China (No. 403740043).
文摘The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.
基金supported by the 863 Program(Grant No.2006AA06Z202)Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金CNPC Young Innovation Fund(Grant No.05E7028)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.
基金supported by the Foundation of State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences(No.SKLA201303)the National Natural Science Foundation of China(Nos.11104044,11234002,and 11474073)
文摘The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling.
基金supported by the National Science and Technology Major Special Sub-project of China(No.2016ZX05024-001-008)the National Natural Science Foundation Joint Fund Prcject of China(No.U1562215).
文摘A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.
基金Supported by the National Natural Science Foundation of China
文摘The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yields a robust Absorbing Boundary Condition(ABC) independent of the angle of incidence and the frequency of outgoing waves. In this paper, the principle of the PML technique is briefly presented. Then some problems in the application and their settlements are discussed emphatically. Finally three numerical tests and a measured result are devoted to examine the accuracy and effectiveness of this approach.
文摘具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74 nm的吸收峰宽。这些吸收谱带来自于表面晶格模式和三个表面等离激元极化子模式。此外,这些模式的谱峰对超构材料几何外形和环境介质光学参数的变化敏感,从而在可见光-近红外范围内可以被调控。用于折射率传感时,其具有347 nm每折射率单位的灵敏度,Figure of Merit达到469。这些特性令这一材料适用于光学滤波器和折射率传感器等用途。
基金973 Program of China(2013CB632704)National Natural Science Foundation of China(NSFC)(11374357,11434017)
文摘We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×10~8W∕m^2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers.
基金National Natural Science Foundation of China(NSFC)(51806001,61490713,61505111)Natural Science Foundation of Guangdong Province(2015A030313549)+3 种基金China Postdoctoral Science Foundation(2016M602509)Science and Technology Planning Project of Guangdong Province(2016B050501005)Science and Technology Project of Shenzhen(JCYJ20150324141711667)Natural Science Foundation of SZU(827-000051,827-000052,827-000059)
文摘In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal(1 DPC) separated by a dielectric. Due to the excitation of optical Tamm states(OTSs) at the interface between the graphene and 1 DPC, a strong absorption phenomenon occurs induced by the coupling of the incident light and OTSs. Although the perfect absorption produced by a metal–distributed Bragg reflector structure has been researched extensively, it is generally at a fixed frequency and not tunable. Here, we show that the perfect absorption at terahertz frequency not only can be tuned to different frequencies but also exhibits a high absorption over a wide angle range. In addition,the absorption of the proposed structure is insensitive to the polarization, and multichannel absorption can berealized by controlling the thickness of the top layer.
基金Türkiye Bilimsel ve Teknolojik Arastirma Kurumu(TüBITAK)DPT-HAMIT(109E301,113E331)Türkiye Bilimler Akademisi(TUBA)
文摘In this paper, we propose a methodology to maximize the absorption bandwidth of a metal-insulator-metal(MIM) based absorber. The proposed structure is made of a Cr-Al_2O_3-Cr multilayer design. At the initial step,the optimum MIM planar design is fabricated and optically characterized. The results show absorption above 0.9 from 400 nm to 850 nm. Afterward, the transfer matrix method is used to find the optimal condition for the perfect light absorption in an ultra-broadband frequency range. This modeling approach predicts that changing the filling fraction of the top Cr layer can extend light absorption toward longer wavelengths. We experimentally proved that the use of proper top Cr thickness and annealing temperature leads to a nearly perfect light absorption from 400 nm to 1150 nm, which is much broader than that of a planar design. Therefore, while keeping the overall process lithography-free, the absorption functionality of the design can be significantly improved. The results presented here can serve as a beacon for future performance-enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.