In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy cons...In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy conservative fidelity schemes,thus resolving the problems of both nonlinear computa- tional instability and incomplete energy conservation,and raising the computational efficiency of the traditional schemes. As the numerical tests of the new schemes demonstrate,in solving the problem of energy conser- vation in operational computations,the new schemes can eliminate the (nonlinear) computational in- stability and,to some extent even the (nonlinear) computational diverging as found in the traditional schemes,Further contrasts between new and traditional schemes also indicate that,in discrete opera- tional computations,the new scheme in the case of nondivergence is capable of prolonging the valid in- tegral time of the corresponding traditional scheme,and eliminating certain kind of systematical com- putational“climate drift”,meanwhile increasing its computational accuracy and reducing its amount of computation.The working principle of this paper is also applicable to the problem concerning baroclin- ic primitive equations.展开更多
基金Sponsored partly by Priority-Scientific-Projects for China's 7th and 8th Five-Year Plana Priority Project of the Director's Foundation of the Institute of Atmospheric PhysicsChinese Academy of Sciences.
文摘In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy conservative fidelity schemes,thus resolving the problems of both nonlinear computa- tional instability and incomplete energy conservation,and raising the computational efficiency of the traditional schemes. As the numerical tests of the new schemes demonstrate,in solving the problem of energy conser- vation in operational computations,the new schemes can eliminate the (nonlinear) computational in- stability and,to some extent even the (nonlinear) computational diverging as found in the traditional schemes,Further contrasts between new and traditional schemes also indicate that,in discrete opera- tional computations,the new scheme in the case of nondivergence is capable of prolonging the valid in- tegral time of the corresponding traditional scheme,and eliminating certain kind of systematical com- putational“climate drift”,meanwhile increasing its computational accuracy and reducing its amount of computation.The working principle of this paper is also applicable to the problem concerning baroclin- ic primitive equations.