We are concerned with a class of parabolic equations in periodically perforated domains with a homogeneous Neumann condition on the boundary of holes.By using the periodic unfolding method in perforated domains, we ob...We are concerned with a class of parabolic equations in periodically perforated domains with a homogeneous Neumann condition on the boundary of holes.By using the periodic unfolding method in perforated domains, we obtain the homogenization results under the conditions slightly weaker than those in the corresponding case considered by Nandakumaran and Rajesh(Nandakumaran A K, Rajesh M. Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Proc. Indian Acad. Sci.(Math. Sci.), 2002, 112(1): 195–207). Moreover,these results generalize those obtained by Donato and Nabil(Donato P, Nabil A. Homogenization and correctors for the heat equation in perforated domains. Ricerche di Matematica L. 2001, 50: 115–144).展开更多
This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribe...This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribed on the boundary of the holes.The presence of the holes does not allow to prove a compactness of the solutions in L2. To overcome this difficulty, the authors introduce a suitable auxiliary linear problem to which a corrector result is applied. Then, the asymptotic behaviour of the semilinear problem as ε→ 0 is described, and the limit equation is given.展开更多
We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization ...We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).展开更多
This paper deals with the homogenization of a class of nonlinear elliptic problems with quadratic growth in a periodically perforated domain. The authors prescribe a Dirichlet condition on the exterior boundary and a ...This paper deals with the homogenization of a class of nonlinear elliptic problems with quadratic growth in a periodically perforated domain. The authors prescribe a Dirichlet condition on the exterior boundary and a nonhomogeneous nonlinear Robin condition on the boundary of the holes. The main difficulty, when passing to the limit, is that the solution of the problems converges neither strongly in L^2(Ω) nor almost everywhere in Ω. A new convergence result involving nonlinear functions provides suitable weak convergence results which permit passing to the limit without using any extension operator.Consequently, using a corrector result proved in [Chourabi, I. and Donato, P., Homogenization and correctors of a class of elliptic problems in perforated domains, Asymptotic Analysis, 92(1), 2015, 1–43, DOI: 10.3233/ASY-151288], the authors describe the limit problem, presenting a limit nonlinearity which is different for the two cases, that of a Neumann datum with a nonzero average and with a zero average.展开更多
For equations of order two with the Dirichlet boundary condition, as the Laplace problem, the Stokes and the Navier-Stokes systems, perforated domains were only studied when the distance between the holes d_ε is equa...For equations of order two with the Dirichlet boundary condition, as the Laplace problem, the Stokes and the Navier-Stokes systems, perforated domains were only studied when the distance between the holes d_ε is equal to or much larger than the size of the holes ε. Such a diluted porous medium is interesting because it contains some cases where we have a non-negligible effect on the solution when(ε, d_ε) →(0, 0).Smaller distances were avoided for mathematical reasons and for these large distances, the geometry of the holes does not affect or rarely affect the asymptotic result. Very recently, it was shown for the 2D-Euler equations that a porous medium is non-negligible only for inter-holes distances much smaller than the sizes of the holes.For this result, the boundary regularity of holes plays a crucial role, and the permeability criterion depends on the geometry of the lateral boundary. In this paper, we relax slightly the regularity condition, allowing a corner, and we note that a line of irregular obstacles cannot slow down a perfect fluid in any regime such thatε ln d_ε→ 0.展开更多
The aim of this paper is to investigate homogenization of stationary Navier-Stokes equations with a Dirichlet boundary condition in domains with 3 kinds of typical holes.For space dimension N=2 and 3,we utilize a unif...The aim of this paper is to investigate homogenization of stationary Navier-Stokes equations with a Dirichlet boundary condition in domains with 3 kinds of typical holes.For space dimension N=2 and 3,we utilize a unified approach for 3 kinds of tiny holes to accomplish the homogenization of stationary Navier-Stokes equation-s.The unified approach due to Lu[1]is mainly based on the uniform estimates with respect to εefor the generalized cell problem inspired by Tartar.展开更多
基金The NSF(11401595)of Chinathe Nationalities Innovation Foundation(2018sycxjj113)of South-central University for Postgraduate
文摘We are concerned with a class of parabolic equations in periodically perforated domains with a homogeneous Neumann condition on the boundary of holes.By using the periodic unfolding method in perforated domains, we obtain the homogenization results under the conditions slightly weaker than those in the corresponding case considered by Nandakumaran and Rajesh(Nandakumaran A K, Rajesh M. Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Proc. Indian Acad. Sci.(Math. Sci.), 2002, 112(1): 195–207). Moreover,these results generalize those obtained by Donato and Nabil(Donato P, Nabil A. Homogenization and correctors for the heat equation in perforated domains. Ricerche di Matematica L. 2001, 50: 115–144).
基金Project supported by the European Research and Training Network "HMS 2000" of the European Union under Contract HPRN-2000-00109.
文摘This paper is devoted to the homogenization of a semilinear parabolic equation with rapidly oscillating coefficients in a domain periodically perforated byε-periodic holes of size ε. A Neumann condition is prescribed on the boundary of the holes.The presence of the holes does not allow to prove a compactness of the solutions in L2. To overcome this difficulty, the authors introduce a suitable auxiliary linear problem to which a corrector result is applied. Then, the asymptotic behaviour of the semilinear problem as ε→ 0 is described, and the limit equation is given.
基金supported by National Natural Science Foundation of China(Grant No.11401595)
文摘We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).
文摘This paper deals with the homogenization of a class of nonlinear elliptic problems with quadratic growth in a periodically perforated domain. The authors prescribe a Dirichlet condition on the exterior boundary and a nonhomogeneous nonlinear Robin condition on the boundary of the holes. The main difficulty, when passing to the limit, is that the solution of the problems converges neither strongly in L^2(Ω) nor almost everywhere in Ω. A new convergence result involving nonlinear functions provides suitable weak convergence results which permit passing to the limit without using any extension operator.Consequently, using a corrector result proved in [Chourabi, I. and Donato, P., Homogenization and correctors of a class of elliptic problems in perforated domains, Asymptotic Analysis, 92(1), 2015, 1–43, DOI: 10.3233/ASY-151288], the authors describe the limit problem, presenting a limit nonlinearity which is different for the two cases, that of a Neumann datum with a nonzero average and with a zero average.
基金supported by the CNRS(program Tellus)the Agence Nationale de la Recherche:Project IFSMACS(Grant No.ANR-15-CE40-0010)+2 种基金 Project SINGFLOWS(Grant No.ANR-18-CE40-0027-01)The second author was supported by National Natural Science Foundation of China(Grant No.11701016)This work has been supported by the Sino-French Research Program in Mathematics(SFRPM),which made several visits between the authors possible.
文摘For equations of order two with the Dirichlet boundary condition, as the Laplace problem, the Stokes and the Navier-Stokes systems, perforated domains were only studied when the distance between the holes d_ε is equal to or much larger than the size of the holes ε. Such a diluted porous medium is interesting because it contains some cases where we have a non-negligible effect on the solution when(ε, d_ε) →(0, 0).Smaller distances were avoided for mathematical reasons and for these large distances, the geometry of the holes does not affect or rarely affect the asymptotic result. Very recently, it was shown for the 2D-Euler equations that a porous medium is non-negligible only for inter-holes distances much smaller than the sizes of the holes.For this result, the boundary regularity of holes plays a crucial role, and the permeability criterion depends on the geometry of the lateral boundary. In this paper, we relax slightly the regularity condition, allowing a corner, and we note that a line of irregular obstacles cannot slow down a perfect fluid in any regime such thatε ln d_ε→ 0.
基金partially supported by the NSF of Jiangsu Province(NO.BK20191296).
文摘The aim of this paper is to investigate homogenization of stationary Navier-Stokes equations with a Dirichlet boundary condition in domains with 3 kinds of typical holes.For space dimension N=2 and 3,we utilize a unified approach for 3 kinds of tiny holes to accomplish the homogenization of stationary Navier-Stokes equation-s.The unified approach due to Lu[1]is mainly based on the uniform estimates with respect to εefor the generalized cell problem inspired by Tartar.