期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Productivity Prediction Model of Perforated Horizontal Well Based on Permeability Calculation in Near-Well High Permeability Reservoir Area
1
作者 Shuangshuang Zhang Kangliang Guo +3 位作者 Xinchen Gao Haoran Yang Jinfeng Zhang Xing Han 《Energy Engineering》 EI 2024年第1期59-75,共17页
To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around t... To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells. 展开更多
关键词 perforated horizontal well PERMEABILITY productivity model sensitivity analysis
下载PDF
Analytical and Experimental Research on Wave Scattering by an Open-Type Rectangular Breakwater with Horizontal Perforated Plates
2
作者 HE Shuyue LIU Yong LI Huajun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1185-1201,共17页
This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The h... This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients. 展开更多
关键词 rectangular breakwater horizontal perforated plates analytical solution experimental test hydrodynamic characteristics
下载PDF
Numerical Analysis of the Flow Field in a Sloshing Tank with a Horizontal Perforated Plate 被引量:4
3
作者 JIN Heng LIU Yong +1 位作者 LI Huajun FU Qiang 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第4期575-584,共10页
Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads wh... Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank. 展开更多
关键词 SLOSHING horizontal perforated plate numerical simulation flow field energy dissipation
下载PDF
Analytical and Experimental Studies on Wave Scattering by a Horizontal Perforated Plate at the Still Water Level 被引量:1
4
作者 HE Shuyue ZHAO Yang +1 位作者 LIU Yong LI Huajun 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1428-1440,共13页
This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is comb... This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is combined with an efficient iterative algorithm to develop an analytical solution in which the quadratic pressure drop condition is imposed on the horizontal perforated plate.The analytical results are in good agreement with the results of an independently developed iterative boundary element method(BEM)solution.Experimental tests are carried out in a wave flume to measure the reflection coefficient and transmission coefficient of the horizontal perforated plate,and the analytical results agree reasonably well with the experimental data.The influence of various structural parameters of the horizontal perforated plate on the hydrodynamic parameters of reflection coefficient,transmission coefficient,energy-loss coefficient,and wave force are analyzed on the basis of the analytical solution.Useful results for the practical engineering application of horizontal perforated plates are also presented. 展开更多
关键词 horizontal perforated plate still water level analytical solution quadratic pressure drop condition physical model test
下载PDF
Study on productivity of horizontal wells with segmental perforation based on pseudo steady-state flow
5
作者 Liu Hui He Shunli 《Engineering Sciences》 EI 2008年第4期87-91,共5页
Segmental perforation is widely used for horizontal wells. However,the flow of fluid in porous media is a complex problem. Using the Fourier transform,principle of potential superposition,trigonometric function transf... Segmental perforation is widely used for horizontal wells. However,the flow of fluid in porous media is a complex problem. Using the Fourier transform,principle of potential superposition,trigonometric function transform,asymptotic analyses,a pressure solution of a pseudo steady-state flow model in 3D circular-boxed media has been established. Comparing with the productivity of vertical wells,an equivalence radius model can be obtained. Based on the model,a method of evaluating the productivity of segmental perforation horizontal well is presented by means of principle of superposition. It shows that the equivalence radius is different for various positions of horizontal wells; the output of both ends of horizontal wells is greater than the others under the same length of perforation interval; it is more important to obtain high productivity by increasing the length of perforation interval than enlarging the spacing between perforation intervals. The result of this research can be used to ascertain the yield of each perforated interval. 展开更多
关键词 horizontal well with segmental perforation productivity analysis equivalent radius dimensionless productivity index
下载PDF
Hydroelastic Analysis of a Very Large Floating Structure Edged with a Pair of Submerged Horizontal Plates 被引量:2
6
作者 MA Zhe CHENG Yong +1 位作者 ZHAI Gangjun OU Jinping 《Journal of Ocean University of China》 SCIE CAS 2015年第2期228-236,共9页
This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated pla... This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. For the hydroelastic analysis, the fluid is assumed to be ideal and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an elastic plate according to the classical thin plate theory. The fluid-structure interaction problem is separated into conventional hydrodynamics and structure dynamics by using modal expansion method in the frequency-domain. It involves, firstly, the deflection of the VLFS, which is expressed by a superposition of modal functions and corresponding modal amplitudes. Then the boundary element method is used to solve the integral equations of diffraction and radiation on the body surface for the velocity potential, whereas the vibration equation is solved by the Galerkin's method for modal amplitudes, and then the deflection is obtained by the sum of multiplying modal functions with modal amplitudes. This study examines the effects of the width and location of the non-perforated horizontal plates on the hydroelastic response of the VLFS, then the performance of perforated plates is investigated to reduce the motion near the fore-end of the VLFS. Considering the advantages and disadvantages of submerged plates without and with cylindrical holes, we propose a simple anti-motion device, which is a combination of a pair of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. The effectiveness of this device in reducing the deformation and bending moment of the VLFS has been confirmed, and is compared with the results in cases without and with the submerged horizontal plates by the analysis in this paper. 展开更多
关键词 VLFS anti-motion device hydroelastic problems perforate horizontal plate submerged horizontal plate
下载PDF
Numerical Method for Wave Forces Acting on Partially Perforated Caisson
7
作者 姜峰 唐晓成 +2 位作者 金钊 张莉 陈洪洲 《China Ocean Engineering》 SCIE EI CSCD 2015年第2期197-208,共12页
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid–st... The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid–structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier–Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods. 展开更多
关键词 SPH partially perforated caisson hydrodynamic total horizontal force
下载PDF
Self-locating Horizontal Perforating Gun
8
《China Oil & Gas》 CAS 2000年第3期46-46,共1页
关键词 HIGH Self-locating horizontal Perforating Gun
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部