This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The h...This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.展开更多
Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads wh...Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.展开更多
Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not b...Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.展开更多
The performance of dual perforated floating plates in a rectangular tank is investigated based on the model tests under different external excitations for different filling rates.It is found that dual perforated float...The performance of dual perforated floating plates in a rectangular tank is investigated based on the model tests under different external excitations for different filling rates.It is found that dual perforated floating plates in the tank can remarkably mitigate violent resonant sloshing responses compared with the clean tank,especially when the external excitation frequency is in the vicinity of the first-order resonant frequency.Next,the parametric studies based on different filling rates and external excitation amplitudes are performed for the first-order resonant frequencies.The presence of dual perforated floating plates seldom shifts the sloshing natural frequencies.Further,dual perforated floating plates change the sloshing modes from the standing-wave mode in the clean tank to the Utube mode,which can arise from the sloshing reduction to some extent.展开更多
The theory of active absorption of the perforated plate is proposed in this paper.The perforated plate is used as the material of active absorption and the depth of the cavity behind the perforated plate is changed ac...The theory of active absorption of the perforated plate is proposed in this paper.The perforated plate is used as the material of active absorption and the depth of the cavity behind the perforated plate is changed according to the resonant frequency of the perforated plate.The rigid wall is moved to produce resonance so that the absorption coefficient can reach the maximal level.It is shown from the numerical calculation that when the perforated plate resonates,the moving distance is large at low frequencies,and the absorption coefficient is low under certain conditions.Perforated plate resonance is effective for single frequency of incident sound wave,which is difficult for the wide frequency,so active absorption based on airflow is posed,and the numerical calculation and experiment are carried out.The results denote that this method of active absorption is practical.展开更多
This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is comb...This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is combined with an efficient iterative algorithm to develop an analytical solution in which the quadratic pressure drop condition is imposed on the horizontal perforated plate.The analytical results are in good agreement with the results of an independently developed iterative boundary element method(BEM)solution.Experimental tests are carried out in a wave flume to measure the reflection coefficient and transmission coefficient of the horizontal perforated plate,and the analytical results agree reasonably well with the experimental data.The influence of various structural parameters of the horizontal perforated plate on the hydrodynamic parameters of reflection coefficient,transmission coefficient,energy-loss coefficient,and wave force are analyzed on the basis of the analytical solution.Useful results for the practical engineering application of horizontal perforated plates are also presented.展开更多
This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorpti...This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorption and sound insulation performances are analyzed.Results show that the aperture of the micro-perforated plate has the greatest influence on the sound absorption coefficient;the smaller the aperture,the greater is this coefficient.The thickness of the resonance plate has the most significant influence on the sound insulation and resonance frequency;the greater the thickness,the wider the frequency domain in which sound insulation is obtained.In addition,the effect of filling the structural cavity with porous foam ceramics has been studied,and it has been found that the porosity and thickness of the porous material have a significant effect on the sound absorption coefficient and sound insulation,while the pore size exhibits a limited influence.展开更多
This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of and . The plates were positi...This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of and . The plates were positioned at distances of 10 cm and 20 cm below the jet inlet. The experiments were realized using 2D Laser Doppler Anemometer (LDA). Different profiles of mean and fluctuating velocities are presented. The presence of a perforated plate strongly modified the airflow pattern compared to an empty enclosure. The velocities above and below the plate depend on several parameters, including the porosity and the plate’s position relative to the inlet slot and the longitudinal position. The difference between the flow velocity above and below the plates could not be related using a universal formula that depends on these parameters. We also investigated the influence of a porous media of a height of 20 cm (a stack of spheres having a diameter of 3.75 cm) located below the perforated plate. The results highlight that the porous medium strengthens the effects of the perforated plate on the flow.展开更多
On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite...On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.展开更多
On the bafis of the generalized von K(?)rm(?)n theory for perforated thin plates established in [1,2], the existence of buckled states for perforated plates subjected to self-equilibrating inplane forces along each ed...On the bafis of the generalized von K(?)rm(?)n theory for perforated thin plates established in [1,2], the existence of buckled states for perforated plates subjected to self-equilibrating inplane forces along each edge systematically is investigated. This work completely generalizes the results in [3, 4].展开更多
On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in...On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in-plane boundary conditions and the corresponding generalized varialional principles are established. One can see that all mathematical models presented in this paper are completely new ones and differ from the ordinary von Karman theory. These mathematical models can be applied to the nonlinear analysis and the Stability analysis of perforaled thin plates in arbitraryplane boundary conditions.展开更多
A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating...A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating a reference perforated plate about its origin point according to the parabolic equation y=-x2 A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.展开更多
In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection...In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection assessment and a true-to-scale simulant for underbelly protection testing. The deformation of target plates was assessed. These were either unprotected or protected by three different types of disruptors. The first disruptor was made of a sandwich structure of two perforated plates filled with a thin aluminum structure allowing the air to pass through. The two other disruptors were made of pieces of cast metallic foam. Two different kinds of foams were used: one with large cells and the second one with small cells. Beforehand, the mitigation efficiency of the disruptors was evaluated using an explosivedriven shock tube(EDST). The experiments showed that blast disruption/mitigation by 3D grid/perforated plate structures was not suitable for vehicle side protection. However, 3D grids/perforated structures proved to be relatively effective for underbelly protection compared to an equivalent mass of steel.展开更多
A numerical investigation was performed on the reduction of the fluid forces acting on the square cylinder in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance b...A numerical investigation was performed on the reduction of the fluid forces acting on the square cylinder in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance between the square cylinder and the perforated plate on the wake of the square cylinder were discussed. Furthermore, the flow characteristics such as the drag coefficient, lift coefficient, Strouhal number and flow pattern were obtained. It can be concluded that the drag force of the square cylinder reduces to some extent due to the addition of the perforated plate. The flow structure varies when the perforated plate is located behind the square cylinder. Moreover, the recirculation zone augments with the increase of L/D, and the vortex trace on the upper and lower surface of the square cylinder moves gradually backwards until a stable recirculation zone formed between the square cylinder and the perforated plate.展开更多
The present paper focuses on the effect of air jets through a perforated thin plate on the characteristics of an acoustic absorption coefficient. We measured the flow rate, internal pressure, acoustic pressure, and tr...The present paper focuses on the effect of air jets through a perforated thin plate on the characteristics of an acoustic absorption coefficient. We measured the flow rate, internal pressure, acoustic pressure, and transfer function by using an improved acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. As a result, the frequency characteristics of the acoustic absorption coefficient against the frequency showed a maximum value at the local frequency. The peak frequency of the acoustic absorption coefficient depended on the thickness of the background air space and the thickness of the perforated plate. As the flow rate increased through the micropores, the peak level of the acoustic absorption coefficient also increased until a flow rate of 80?l /min. As the flow rate further increased, the peak level of the acoustic absorption coefficient decreased and that of the high frequency band increased.展开更多
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ...Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.展开更多
When performing numerical modeling of fluid flows where a clear medium is adjacent to a porous medium, a degree of difficulty related to the condition at the interface between the two media, where slip velocity exists...When performing numerical modeling of fluid flows where a clear medium is adjacent to a porous medium, a degree of difficulty related to the condition at the interface between the two media, where slip velocity exists, is encountered. A similar situation can be found when a jet flow interacts with a perforated plate. The numerical modeling of a perforated plate by meshing in detail each hole is most often impossible in a practical case (many holes with different shapes). Therefore, perforated plates are often modeled as porous zones with a simplified hypothesis based on pressure losses related to the normal flow through the plate. Nevertheless, previous investigations of flow over permeable walls highlight the impossibility of deducing a universal analytical law governing the slip velocity coefficient since the latter depends on many parameters such as the Reynolds number, porosity, interface structure, design of perforations, and flow direction. This makes the modeling of such a configuration difficult. The present study proposes an original numerical interface law for a perforated plate. It is used to model the turbulent jet flow interacting with a perforated plate considered as a fictitious porous medium without a detailed description of the perforations. It considers the normal and tangential effects of the flow over the plate. Validation of the model is realized through comparison with experimental data.展开更多
This paper presents the experimental pressure loss of water flow through perforated plates with geometry similar to the ones of the bottom end piece of a Pressurized Water Reactors (PWR) fuel element. Geometric feat...This paper presents the experimental pressure loss of water flow through perforated plates with geometry similar to the ones of the bottom end piece of a Pressurized Water Reactors (PWR) fuel element. Geometric features like the number, pattern and diameter of holes were evaluated as well as different inlet chamfers. The recovering pressure profile downstream of the plates was also measured. The experimental results were compared with numerical modeling performed with the commercial Computational Fluid Dynamics (CFD) code CFX 11.0. The analysis of the results shows that the standard k-e turbulence model presents the best compromise between computing time and accuracy for the calculation of the total pressure loss through the perforated plates tested.展开更多
Owing to the existence of distributed holes, it is difficult tosolve the bending problem of perforated plates by the conventionalfinite element method. A homogenization-based method for this problemis presented in thi...Owing to the existence of distributed holes, it is difficult tosolve the bending problem of perforated plates by the conventionalfinite element method. A homogenization-based method for this problemis presented in this paper. As an example, the bending analysis of acircular perforated plate with distributed step-wise cylindricalholes is made. The deflection and the fundamental frequen- cyobtained by present method are in good agreement with experimentaldata, this implies that the method is effective.展开更多
In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and...In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.展开更多
基金supported by the National Natural Sci-ence Foundation of China(Nos.52201345,and 52001293)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903,and 51279224)
文摘Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
文摘Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.
基金This study is financially supported by Hainan Provincial Natural Science Foundation of China(Grant No.519MS026)Scientific Research Foundation of Hainan University(Grant No.KYQD(ZR)1878).
文摘The performance of dual perforated floating plates in a rectangular tank is investigated based on the model tests under different external excitations for different filling rates.It is found that dual perforated floating plates in the tank can remarkably mitigate violent resonant sloshing responses compared with the clean tank,especially when the external excitation frequency is in the vicinity of the first-order resonant frequency.Next,the parametric studies based on different filling rates and external excitation amplitudes are performed for the first-order resonant frequencies.The presence of dual perforated floating plates seldom shifts the sloshing natural frequencies.Further,dual perforated floating plates change the sloshing modes from the standing-wave mode in the clean tank to the Utube mode,which can arise from the sloshing reduction to some extent.
基金National Natural Science Foundation of China(No.51705545)。
文摘The theory of active absorption of the perforated plate is proposed in this paper.The perforated plate is used as the material of active absorption and the depth of the cavity behind the perforated plate is changed according to the resonant frequency of the perforated plate.The rigid wall is moved to produce resonance so that the absorption coefficient can reach the maximal level.It is shown from the numerical calculation that when the perforated plate resonates,the moving distance is large at low frequencies,and the absorption coefficient is low under certain conditions.Perforated plate resonance is effective for single frequency of incident sound wave,which is difficult for the wide frequency,so active absorption based on airflow is posed,and the numerical calculation and experiment are carried out.The results denote that this method of active absorption is practical.
基金supported by the National Natural Science Foundation of China(Nos.51725903 and 52001293)the Taishan Scholar Program of Shandong Province(No.ts20190915).
文摘This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is combined with an efficient iterative algorithm to develop an analytical solution in which the quadratic pressure drop condition is imposed on the horizontal perforated plate.The analytical results are in good agreement with the results of an independently developed iterative boundary element method(BEM)solution.Experimental tests are carried out in a wave flume to measure the reflection coefficient and transmission coefficient of the horizontal perforated plate,and the analytical results agree reasonably well with the experimental data.The influence of various structural parameters of the horizontal perforated plate on the hydrodynamic parameters of reflection coefficient,transmission coefficient,energy-loss coefficient,and wave force are analyzed on the basis of the analytical solution.Useful results for the practical engineering application of horizontal perforated plates are also presented.
基金This study was supported by State Grid Corporation Science and Technology Project“Research on Comprehensive Control Technology of Low Frequency Noise of Distribution Transformers in Residential Areas”(5216A019000P).
文摘This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorption and sound insulation performances are analyzed.Results show that the aperture of the micro-perforated plate has the greatest influence on the sound absorption coefficient;the smaller the aperture,the greater is this coefficient.The thickness of the resonance plate has the most significant influence on the sound insulation and resonance frequency;the greater the thickness,the wider the frequency domain in which sound insulation is obtained.In addition,the effect of filling the structural cavity with porous foam ceramics has been studied,and it has been found that the porosity and thickness of the porous material have a significant effect on the sound absorption coefficient and sound insulation,while the pore size exhibits a limited influence.
文摘This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of and . The plates were positioned at distances of 10 cm and 20 cm below the jet inlet. The experiments were realized using 2D Laser Doppler Anemometer (LDA). Different profiles of mean and fluctuating velocities are presented. The presence of a perforated plate strongly modified the airflow pattern compared to an empty enclosure. The velocities above and below the plate depend on several parameters, including the porosity and the plate’s position relative to the inlet slot and the longitudinal position. The difference between the flow velocity above and below the plates could not be related using a universal formula that depends on these parameters. We also investigated the influence of a porous media of a height of 20 cm (a stack of spheres having a diameter of 3.75 cm) located below the perforated plate. The results highlight that the porous medium strengthens the effects of the perforated plate on the flow.
基金Project supported by National Natural Science Foundation of China.
文摘On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.
基金State Education Commission of the People's Republic of China
文摘On the bafis of the generalized von K(?)rm(?)n theory for perforated thin plates established in [1,2], the existence of buckled states for perforated plates subjected to self-equilibrating inplane forces along each edge systematically is investigated. This work completely generalizes the results in [3, 4].
文摘On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in-plane boundary conditions and the corresponding generalized varialional principles are established. One can see that all mathematical models presented in this paper are completely new ones and differ from the ordinary von Karman theory. These mathematical models can be applied to the nonlinear analysis and the Stability analysis of perforaled thin plates in arbitraryplane boundary conditions.
文摘A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating a reference perforated plate about its origin point according to the parabolic equation y=-x2 A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.
基金the French Ministry of Defense for its financial support, in the frame of an official subsidy agreement (convention de subvention)。
文摘In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection assessment and a true-to-scale simulant for underbelly protection testing. The deformation of target plates was assessed. These were either unprotected or protected by three different types of disruptors. The first disruptor was made of a sandwich structure of two perforated plates filled with a thin aluminum structure allowing the air to pass through. The two other disruptors were made of pieces of cast metallic foam. Two different kinds of foams were used: one with large cells and the second one with small cells. Beforehand, the mitigation efficiency of the disruptors was evaluated using an explosivedriven shock tube(EDST). The experiments showed that blast disruption/mitigation by 3D grid/perforated plate structures was not suitable for vehicle side protection. However, 3D grids/perforated structures proved to be relatively effective for underbelly protection compared to an equivalent mass of steel.
文摘A numerical investigation was performed on the reduction of the fluid forces acting on the square cylinder in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance between the square cylinder and the perforated plate on the wake of the square cylinder were discussed. Furthermore, the flow characteristics such as the drag coefficient, lift coefficient, Strouhal number and flow pattern were obtained. It can be concluded that the drag force of the square cylinder reduces to some extent due to the addition of the perforated plate. The flow structure varies when the perforated plate is located behind the square cylinder. Moreover, the recirculation zone augments with the increase of L/D, and the vortex trace on the upper and lower surface of the square cylinder moves gradually backwards until a stable recirculation zone formed between the square cylinder and the perforated plate.
文摘The present paper focuses on the effect of air jets through a perforated thin plate on the characteristics of an acoustic absorption coefficient. We measured the flow rate, internal pressure, acoustic pressure, and transfer function by using an improved acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. As a result, the frequency characteristics of the acoustic absorption coefficient against the frequency showed a maximum value at the local frequency. The peak frequency of the acoustic absorption coefficient depended on the thickness of the background air space and the thickness of the perforated plate. As the flow rate increased through the micropores, the peak level of the acoustic absorption coefficient also increased until a flow rate of 80?l /min. As the flow rate further increased, the peak level of the acoustic absorption coefficient decreased and that of the high frequency band increased.
文摘Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.
文摘When performing numerical modeling of fluid flows where a clear medium is adjacent to a porous medium, a degree of difficulty related to the condition at the interface between the two media, where slip velocity exists, is encountered. A similar situation can be found when a jet flow interacts with a perforated plate. The numerical modeling of a perforated plate by meshing in detail each hole is most often impossible in a practical case (many holes with different shapes). Therefore, perforated plates are often modeled as porous zones with a simplified hypothesis based on pressure losses related to the normal flow through the plate. Nevertheless, previous investigations of flow over permeable walls highlight the impossibility of deducing a universal analytical law governing the slip velocity coefficient since the latter depends on many parameters such as the Reynolds number, porosity, interface structure, design of perforations, and flow direction. This makes the modeling of such a configuration difficult. The present study proposes an original numerical interface law for a perforated plate. It is used to model the turbulent jet flow interacting with a perforated plate considered as a fictitious porous medium without a detailed description of the perforations. It considers the normal and tangential effects of the flow over the plate. Validation of the model is realized through comparison with experimental data.
文摘This paper presents the experimental pressure loss of water flow through perforated plates with geometry similar to the ones of the bottom end piece of a Pressurized Water Reactors (PWR) fuel element. Geometric features like the number, pattern and diameter of holes were evaluated as well as different inlet chamfers. The recovering pressure profile downstream of the plates was also measured. The experimental results were compared with numerical modeling performed with the commercial Computational Fluid Dynamics (CFD) code CFX 11.0. The analysis of the results shows that the standard k-e turbulence model presents the best compromise between computing time and accuracy for the calculation of the total pressure loss through the perforated plates tested.
基金the National Natural Science Foundation (19602007)National Outstanding Youth Foundation (19525206)
文摘Owing to the existence of distributed holes, it is difficult tosolve the bending problem of perforated plates by the conventionalfinite element method. A homogenization-based method for this problemis presented in this paper. As an example, the bending analysis of acircular perforated plate with distributed step-wise cylindricalholes is made. The deflection and the fundamental frequen- cyobtained by present method are in good agreement with experimentaldata, this implies that the method is effective.
基金The project supported by National Natural Science Foundation of China(90305018)
文摘In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.