The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr...The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.展开更多
The integrated aircraft flight performance management techniques are discussed in this paper based on the point-mass energy state approximation principle. The flight performance optimization algorithms, developed with...The integrated aircraft flight performance management techniques are discussed in this paper based on the point-mass energy state approximation principle. The flight performance optimization algorithms, developed with energy state approximation approach, are first introduced, the functionally integrated flight path/speed control system, so called total energy control system (TECS), is then discussed, and the guidance technique and algorithms, which relate the performance optimization results directly with the TECS, are analyzed and developed. Digital simulation results for a specific transport aircraft model demonstrate the satisfactory performances of the resulted flight performance management system.展开更多
The landing task of an aircraft under low aerodynamic pressure on carrier requires precise airplane control,A flight/thrust integrated control system(FTICS)with constant ad,actual angle of attack,is developed using LM...The landing task of an aircraft under low aerodynamic pressure on carrier requires precise airplane control,A flight/thrust integrated control system(FTICS)with constant ad,actual angle of attack,is developed using LMI-based H∞synthesis.The typical single input/outputspecifications are translated into the weighting functions of an H∞output-feedback synthesis problem.The motiva-tion of the work is to improve the key performance of dy-namic tracking and air disturbance attenuation.The FTICS can keep the attitude andgle and the path angle un-changeable as the airplane is passing through the ramp at which the tracking radar doesnot work and the guidance signal is terminated.For engineering application,an or-der-reduction method of the H∞controller is also pro-posed,Simulational results indicate that the system satis-fies the design requirements quite well.展开更多
In this paper, sensitivity approaches are taken to analyze and design an integrated flight propulsion control system where the interaction between subsystems direitly affects the stability property and handling perfor...In this paper, sensitivity approaches are taken to analyze and design an integrated flight propulsion control system where the interaction between subsystems direitly affects the stability property and handling performances of the aircraft. The eigenvalue sen sitivity approach is employed to study the effect of coupling parameters on system stability and gain sensitivity approach is used to direct the reduced states feedback suboptimal control system design. Simulation results show that the integrated flight propulsion control system designed by sensitivity approaches is of good performance.展开更多
In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protect...In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protection control scheme is presented.Firstly,the existing definition of the SFE based on attainable equilibrium set(AES)is extended to make it consistent and suitable for the UAV system under disturbance.Secondly,a higher-order disturbance observer(HODO)is developed to estimate the disturbances and the disturbance estimation is applied in the computation of the SFE.Thirdly,by using the calculated SFE,a desired safety trajectory based on the time-varying safety margin function and first-order filter is developed to prevent the states of the UAV system from exceeding the SFE.Moreover,an SFE protection controller is proposed by combining the desired safety trajectory,backstepping method,HODO design,and prescribed performance(PP)control technique.In particular,the closed-loop system is established on the basis of disturbance estimation error,filter error,and tracking error.Finally,the stability of the closed-loop system is verified by the Lyapunov stability theory,and the simulations are presented to illustrate the effectiveness of the proposed control scheme.展开更多
The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g ...The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g for specific scientific experiments.MAIS is mainly composed of a stator and a floater,and payloads are mounted on the floater.Sensing relative motion with respect to the stator fixed on the spacecraft,the floater is isolated from vibration on the stator via control forces and torques generated by electromagnetic actuators.This isolation results in a high-level microgravity environment.Before MAIS was launched into space,its control performance had been simulated on computers and tested by air-bearing platform levitation and aircraft parabolic flight.This article first presents an overview of the MAIS’s hardware system,particularly system structure,measurement sensors,and control actuators.Its system dynamics,state estimation,and control laws are then discussed,followed by the results of computer simulation and engineering tests,including the test of the six-degree-of-freedom motion by aircraft parabolic flight.Simulation and test results verify the accuracy of the control strategy design,effectiveness of the control algorithms,and performance of the entire control system,paving the way for operation of MAIS in space.This article also presents the steps recommended for the control performance simulation and tests of MAIS-like devices.These devices are expected to be used on China’s Space Station for various scientific experiments that require a high-level microgravity environment.展开更多
Hypersonic vehicles(HSVs)exhibit significant advantages over other vehicles,including the wide range of velocity and large airspace types,and these features have contributed to the rapid development of HSVs in the las...Hypersonic vehicles(HSVs)exhibit significant advantages over other vehicles,including the wide range of velocity and large airspace types,and these features have contributed to the rapid development of HSVs in the last 20 years.Moreover,hypersonic technologies have become a multidisciplinary research topic in the fields of aerodynamics,propulsion,structure,material,and control.Different types of re-entry gliding,air-breathing cruise,and aerospace vehicles have been designed to realize ambitious tasks,which in turn influenced the technological advancements and process change in the military.This paper summarizes the control-oriented integrated design of HSVs.First,the status of current research on the distinct characteristics and technique issues of HSVs is introduced.Then,the progresses made on complex modeling,guidance and control,and trajectory optimization are elaborated to exhibit the significant research interest in hypersonic technologies.The control-integrated design of HSVs is emphasized to solve the multidisciplinary design problems associated with the model and its control and trajectory.Various strategies regarding the multidisciplinary optimization design are also proposed to solve the integrated design problem.Finally,suggestions are provided for the control-oriented integrated design of HSVs.展开更多
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
基金Supported by the Aeronautical Science Foundation of China(2010ZB52011)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11-0213)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010055)~~
文摘The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.
文摘The integrated aircraft flight performance management techniques are discussed in this paper based on the point-mass energy state approximation principle. The flight performance optimization algorithms, developed with energy state approximation approach, are first introduced, the functionally integrated flight path/speed control system, so called total energy control system (TECS), is then discussed, and the guidance technique and algorithms, which relate the performance optimization results directly with the TECS, are analyzed and developed. Digital simulation results for a specific transport aircraft model demonstrate the satisfactory performances of the resulted flight performance management system.
文摘The landing task of an aircraft under low aerodynamic pressure on carrier requires precise airplane control,A flight/thrust integrated control system(FTICS)with constant ad,actual angle of attack,is developed using LMI-based H∞synthesis.The typical single input/outputspecifications are translated into the weighting functions of an H∞output-feedback synthesis problem.The motiva-tion of the work is to improve the key performance of dy-namic tracking and air disturbance attenuation.The FTICS can keep the attitude andgle and the path angle un-changeable as the airplane is passing through the ramp at which the tracking radar doesnot work and the guidance signal is terminated.For engineering application,an or-der-reduction method of the H∞controller is also pro-posed,Simulational results indicate that the system satis-fies the design requirements quite well.
文摘In this paper, sensitivity approaches are taken to analyze and design an integrated flight propulsion control system where the interaction between subsystems direitly affects the stability property and handling performances of the aircraft. The eigenvalue sen sitivity approach is employed to study the effect of coupling parameters on system stability and gain sensitivity approach is used to direct the reduced states feedback suboptimal control system design. Simulation results show that the integrated flight propulsion control system designed by sensitivity approaches is of good performance.
基金supported in part by the National Science Fund for Distinguished Young Scholars 61825302in part by the National Natural Science Foundation of China under Grant U2013201in part by the Key R&D projects(Social Development)in Jiangsu Province of China under Grant BE2020704.
文摘In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protection control scheme is presented.Firstly,the existing definition of the SFE based on attainable equilibrium set(AES)is extended to make it consistent and suitable for the UAV system under disturbance.Secondly,a higher-order disturbance observer(HODO)is developed to estimate the disturbances and the disturbance estimation is applied in the computation of the SFE.Thirdly,by using the calculated SFE,a desired safety trajectory based on the time-varying safety margin function and first-order filter is developed to prevent the states of the UAV system from exceeding the SFE.Moreover,an SFE protection controller is proposed by combining the desired safety trajectory,backstepping method,HODO design,and prescribed performance(PP)control technique.In particular,the closed-loop system is established on the basis of disturbance estimation error,filter error,and tracking error.Finally,the stability of the closed-loop system is verified by the Lyapunov stability theory,and the simulations are presented to illustrate the effectiveness of the proposed control scheme.
基金The authors gratefully acknowledge DLR for providing us the opportunity to attend the 27th parabolic flight campaign and Novespace for the support for the test of MAIS by the Airbus A310 ZERO-GThe authors would also like to thank Weijia Ren,Xiaoru Sang,Shimeng Lv,Peng Yang,Yu-e Gao,Lingcai Song,Mengxi Yu,Boqi Kang,Yanlin Zhou,and Anping Wang,who have contributed significantly to the MAIS project.
文摘The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g for specific scientific experiments.MAIS is mainly composed of a stator and a floater,and payloads are mounted on the floater.Sensing relative motion with respect to the stator fixed on the spacecraft,the floater is isolated from vibration on the stator via control forces and torques generated by electromagnetic actuators.This isolation results in a high-level microgravity environment.Before MAIS was launched into space,its control performance had been simulated on computers and tested by air-bearing platform levitation and aircraft parabolic flight.This article first presents an overview of the MAIS’s hardware system,particularly system structure,measurement sensors,and control actuators.Its system dynamics,state estimation,and control laws are then discussed,followed by the results of computer simulation and engineering tests,including the test of the six-degree-of-freedom motion by aircraft parabolic flight.Simulation and test results verify the accuracy of the control strategy design,effectiveness of the control algorithms,and performance of the entire control system,paving the way for operation of MAIS in space.This article also presents the steps recommended for the control performance simulation and tests of MAIS-like devices.These devices are expected to be used on China’s Space Station for various scientific experiments that require a high-level microgravity environment.
基金Aerospace Science and Technology Innovation Fund(CASC2016)Six Talent Peaks Project in Jiangsu Province(KTHY-025).
文摘Hypersonic vehicles(HSVs)exhibit significant advantages over other vehicles,including the wide range of velocity and large airspace types,and these features have contributed to the rapid development of HSVs in the last 20 years.Moreover,hypersonic technologies have become a multidisciplinary research topic in the fields of aerodynamics,propulsion,structure,material,and control.Different types of re-entry gliding,air-breathing cruise,and aerospace vehicles have been designed to realize ambitious tasks,which in turn influenced the technological advancements and process change in the military.This paper summarizes the control-oriented integrated design of HSVs.First,the status of current research on the distinct characteristics and technique issues of HSVs is introduced.Then,the progresses made on complex modeling,guidance and control,and trajectory optimization are elaborated to exhibit the significant research interest in hypersonic technologies.The control-integrated design of HSVs is emphasized to solve the multidisciplinary design problems associated with the model and its control and trajectory.Various strategies regarding the multidisciplinary optimization design are also proposed to solve the integrated design problem.Finally,suggestions are provided for the control-oriented integrated design of HSVs.