This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are c...This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods.展开更多
The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of...The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.展开更多
基金supported in part by the National Natural Science Foundation of China(62373152,62333005,U21B6001,62073143,62273121)in part by the Natural Science Funds for Excellent Young Scholars of Hebei Province in 2022(F2022202014)+1 种基金in part by Science and Technology Research Project of Colleges and Universities in Hebei Province(BJ2020017)in part by the China Postdoctoral Science Foundation(2022M711639,2023T160320).
文摘This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods.
文摘The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.