This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various...This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.展开更多
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ...Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.展开更多
Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electro...Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode.展开更多
InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hinder...InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme...A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.展开更多
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c...Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.展开更多
To study the influence of rolling on the interfaces and mechanical performance of graphene-reinforced Al-matrix composites,a rolling method was used to process them.Using scanning electron microscopy(SEM),transmission...To study the influence of rolling on the interfaces and mechanical performance of graphene-reinforced Al-matrix composites,a rolling method was used to process them.Using scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,and tensile testing,this study analyzed the micromorphology,interfaces,and mechanical performance of the composites before and after rolling.The experimental results demonstrates that the composites after hot rolling has uniform structures with strong interfacial bonding.With an increase in rolling temperature,the tensile strength and elastic modulus of the composites gradually increase.However,when the rolling temperature is higher than 500°C,granular and rod-like Al4C3 phases are observed at the interfaces and the mechanical performance of the composites is degraded.When the rolling temperature is 480°C,the composites show the optimal comprehensive mechanical performance,with a tensile strength and elastic modulus of 403.3 MPa and 77.6 GPa,respectively,which represent increases of 31.6%and 36.9%,respectively,compared with the corresponding values prior to rolling.展开更多
Color coding is often used to enhance decision quality in complex man-machine interfaces of integrated display systems. However, people are easily distracted by irrelevant colors and by the numerous data points and co...Color coding is often used to enhance decision quality in complex man-machine interfaces of integrated display systems. However, people are easily distracted by irrelevant colors and by the numerous data points and complex structures in the interface. Although an increasing number of studies are seriously focusing on the problem of achieving efficient color coding, few are able to determine the effects of target and distractor saturations on cognitive performance. To study the performances of target colors among distractors, a systematic experiment is conducted to assess the influence of high and low saturated targets on cognitive performance, and the affecting extent of different saturated distractors of homogeneous colors on targets. According to the analysis of the reaction time through the non-parametric statistical method, a calculation method of the cognitive performance of each color is proposed. Based on the calculation of the color differences and the accumulation of the reaction times, it is shown that with the different saturated distractors of homogeneous colors, the high saturated yellow targets perform better than the low saturated ones, and the green and blue targets have moderate performances. When searching for a singleton target placed oll a black background, the color difference between the target and the distractor should be more than 20AE*ab units in the yellow saturation coding, whereas the color difference should be more than 40△E*ab units in the blue and green saturation coding. In addition, as regards saturation coding, the influence of the color difference between the target and the background on cognitive performance is greater than that of the color difference between the target and the distractor. Seemingly, the hue attribute determines whether the saturation difference between the target and the distractor affects thc cognitive performance. Based on the experimental results, the simulation design of the instrument dials in a flight situation awareness interface is completed and tested. Simulation results show the feasibility of the method of choosing the target and distractor colors, and the proposed research provides the instruction for the color saturation design of the interface.展开更多
The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steel...The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steelbamboo interface is the premise of composite effect.13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test,and the strain difference analysis method was proposed to study the distribution of shear stress.The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood.The shear stress is not evenly distributed along the longitudinal direction of the interface,showing a shape of“larger at two ends and smaller in the middle”.The lower end of the interface is the initial location of the interface failure and the shear stress concentration degree is positively correlated with the thickness of the externally bonded bamboo plate.The shear resistance of steel-bamboo interface can be enhanced by improving the adhesion between steel and structural adhesive and ameliorating the quality of bamboo products.展开更多
Quality of Service is an important attribute of a software system. In retrospect, performance assessment based on user interaction with the system has given a better understanding of underlying disciplines of the prod...Quality of Service is an important attribute of a software system. In retrospect, performance assessment based on user interaction with the system has given a better understanding of underlying disciplines of the product. In this paper, we capture user interaction with the prototype/User Interface (UI). An approach for developing activity model from the user interface model is presented using workflows and functional elements. A methodology is proposed to transform UI into activity diagram. The approach is validated by an experimental setup using Amazon service. The performance of Amazon service is assessed using activity based performance prediction methodology, and the simulation results are obtained using SMTQA.展开更多
Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electro...Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electrolyte distribution with varied particle sizes is tuned to construct solid-state batteries with excellent performance at different operating temperatures.Solid-state batteries with the configuration S/L(small-sized SE in composite cathode and large-sized SE in electrolyte layer)show the best performance at room temperature(168 mA h g^(−1) at 0.2 C,retention of 99%,100 cycles)and−20°C(89 mA h g^(−1) at 0.05 C),while the configuration S/S displays better performance at elevated temperature.The superior performance of S/L battery is associated with faster lithium-ion dynamics due to the better solid/solid interface between active materials and electrolytes.Moreover,the inferior performance at 60℃is caused by the formation of voids and cracks in the electrolyte layer during cycling.In contrast,the S/S battery delivers superior performance at elevated operating temperature because of the integrated structure.This work confirms that tailoring electrolyte size has significant effect on fabricating all-climate solid-state batteries.展开更多
As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corres...As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corresponding flexural performance of the lap spliced construction joint. After having slowed down the strength development of the concrete placed in the joint of the precast deck by means of a curing retardant, the concrete at the interface is crushed so as to expose the steel fibers and the change in the flexural performance is observed experimentally according to the exposure of the steel fibers. The results show that, even if the ultimate strength and stiffness of the UHPC precast deck including the joint are mostly determined by the arrangement details of the rebar lap splice, the exposure of the steel fibers can secure stable ductile behavior and reduce the width of the cracks generated at the precast deck-joint interface under service load.展开更多
This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of def...This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 10<sup>13</sup> cm<sup>-2</sup>, we obtained a good efficiency of 22.9% when -0.1 eV analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV.展开更多
In this work, the electrochemical performance of LiNi0.8Co0.1Mn0.1O2(NCM811) has been investigated after cycling with various upper cutoff voltages. Noteworthily, electrochemical impedance of NCM811 declined with the ...In this work, the electrochemical performance of LiNi0.8Co0.1Mn0.1O2(NCM811) has been investigated after cycling with various upper cutoff voltages. Noteworthily, electrochemical impedance of NCM811 declined with the increasing cycle number to high voltages. It was found that the decline of charge transfer impedance could be related to the structural and compositional change of cathode electrolyte interphase(CEI) of NCM811 when charging to high voltages, based on the characterization of electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The corresponding mechanism has also been proposed in this study. Specifically, due to the increasing roughness of cathode surface, the bottom of CEI film and cubic phase on cathode surface form a transition region mainly at high voltages, leading to the nonobvious boundary. This newly formed transition region at high voltages could promote the Li ion diffusion from electrolyte to cathode, then reducing charge transfer impedance. Additionally, the decrease of Li F on the surface of the cathode could also make a contribution to lower the interface impedance. This study delivers a different evolution of CEI on NCM811, and the impact of CEI evolution on electrochemical performance when charging to a high voltage.展开更多
Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durabili...Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durability as well as inferior electrochemical performance. Herein, in order to improve the safety and durability, a succinonitrile(SN) modified composite SSE is proposed. In this SSE, SN is introduced for eliminating the boundary between ceramic particles, increasing the amorphous region of polymer and ensuring fast ionic transport. Subsequently, the symmetric battery based on the proposed SSE achieves a long cycle life of 3000 h. Moreover, the elaborate cathode interface through the SN participation effectively reduces the barriers to the combination between lithium ions and electrons, facilitating the corresponding electrochemical reactions.As a result, the solid-state Li-O_(2)battery based on this SSE and tuned cathode interface achieves improved electrochemical performance including large specific capacity over 12,000 m Ah g^(-1), enhanced rate capacity as well as stable cycle life of 54 cycles at room temperature. This ingenious design provides a new orientation for the evolution of solid-state Li-O_(2)batteries.展开更多
This work develops 2-Phenyl-1H-imidazole-1-sulfonate(PHIS)as a multi-functional electrolyte additive for H2O/HF scavenging and film formation to improve the high temperature performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_...This work develops 2-Phenyl-1H-imidazole-1-sulfonate(PHIS)as a multi-functional electrolyte additive for H2O/HF scavenging and film formation to improve the high temperature performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite batteries.After 450 cycles at room temperature(25℃),the discharge capacity retentions of batteries with blank and PHIS-containing electrolyte are 56.03%and 94.92%respectively.After 230 cycles at high temperatures(45℃),their values are 75.30%and 88.38%respectively.The enhanced electrochemical performance of the batteries with PHIS-containing electrolyte is supported by the spectroscopic characterization and theoretical calculations.It is demonstrated that this PHIS electrolyte additive can facilitate the construction of the electrode interface films,remove the H2O/HF in the electrolyte,and improve the electrochemical performance of the batteries.This work not only develops a sulfonate-based electrolyte but also can stimulate new ideas of functional additives to improve the battery performance.展开更多
By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The...By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density.展开更多
Interface engineering has been regarded as an effective and noninvasive means to optimize the performance of perovskite solar cells(PSCs).Here,doping engineering of a ZnO electron transport layer(ETL)and CsPbI3/ZnO in...Interface engineering has been regarded as an effective and noninvasive means to optimize the performance of perovskite solar cells(PSCs).Here,doping engineering of a ZnO electron transport layer(ETL)and CsPbI3/ZnO interface engineering via introduction of an interfacial layer are employed to improve the performances of CsPbI3-based PSCs.The results show that when introducing a TiO2 buffer layer while increasing the ZnO layer doping concentration,the open-circuit voltage,power conversion efficiency,and fill factor of the CsPbI3-based PSCs can be improved to 1.31 V,21.06%,and 74.07%,respectively,which are superior to those of PSCs only modified by the TiO2 buffer layer or high-concentration doping of ZnO layer.On the one hand,the buffer layer relieves the band bending and structural disorder of CsPbI3.On the other hand,the increased doping concentration of the ZnO layer improves the conductivity of the TiO2/ZnO bilayer ETL because of the strong interaction between the TiO2 and ZnO layers.However,such phenomena are not observed for those of a PCBM/ZnO bilayer ETL because of the weak interlayer interaction of the PCBM/ZnO interface.These results provide a comprehensive understanding of the CsPbI3/ZnO interface and suggest a guideline to design high-performance PSCs.展开更多
Fe/Tb multilayers with various Fe layer thickness and fixed Tb layer thickness were prepared by e-beam alternate vapor deposition. Analyses of the microstructure of these films show that the magnetic performance is st...Fe/Tb multilayers with various Fe layer thickness and fixed Tb layer thickness were prepared by e-beam alternate vapor deposition. Analyses of the microstructure of these films show that the magnetic performance is strongly affected by the interface structure. Fe in the films evolved to amorphous phase and the Fe/Tb interface became indiscernible with decreasing Fe thickness. At the same time, the film was observed to perform superparamagnetically, which is quite different from the ferromagnetic behavior of Fe/Tb multilayers that have sharp Fe/Tb interface. Our work shows that the interface roughness has strong influence to the properties of magnetic multilayers.展开更多
文摘This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.
基金National Key Research and Development Program of China under Grant No.2018YFC0705602。
文摘Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.
基金financially supported by the National Nature Science Foundation of Jiangsu Province(BK20221259)。
文摘Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode.
基金the support of the National Natural Science Foundation of China (Grant No.62204030)supported in part by the National Natural Science Foundation of China (Grant Nos.62122036,62034004,61921005,61974176,and 12074176)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)。
文摘InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金supported by funding from Bavarian Center for Battery Technology(Baybatt,Hightech Agenda Bayern)and Bayerisch-Tschechische Hochschulagentur(BTHA)(BTHA-AP-202245,BTHA-AP-2023-5,and BTHA-AP-2023-12)supported by the University of Bayreuth-Deakin University Joint Ph.D.Program+1 种基金supported by the Regional Innovation Strategy(RIS)through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS2023-00213749)
文摘A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.42272310).
文摘Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.
基金financially supported by the National Key Development Program of China for the “13th Five-Year Plan”(No.2016YFB0700300)
文摘To study the influence of rolling on the interfaces and mechanical performance of graphene-reinforced Al-matrix composites,a rolling method was used to process them.Using scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,and tensile testing,this study analyzed the micromorphology,interfaces,and mechanical performance of the composites before and after rolling.The experimental results demonstrates that the composites after hot rolling has uniform structures with strong interfacial bonding.With an increase in rolling temperature,the tensile strength and elastic modulus of the composites gradually increase.However,when the rolling temperature is higher than 500°C,granular and rod-like Al4C3 phases are observed at the interfaces and the mechanical performance of the composites is degraded.When the rolling temperature is 480°C,the composites show the optimal comprehensive mechanical performance,with a tensile strength and elastic modulus of 403.3 MPa and 77.6 GPa,respectively,which represent increases of 31.6%and 36.9%,respectively,compared with the corresponding values prior to rolling.
基金Supported by National Natural Science Foundation of China(Grant Nos.71071032,71271053)
文摘Color coding is often used to enhance decision quality in complex man-machine interfaces of integrated display systems. However, people are easily distracted by irrelevant colors and by the numerous data points and complex structures in the interface. Although an increasing number of studies are seriously focusing on the problem of achieving efficient color coding, few are able to determine the effects of target and distractor saturations on cognitive performance. To study the performances of target colors among distractors, a systematic experiment is conducted to assess the influence of high and low saturated targets on cognitive performance, and the affecting extent of different saturated distractors of homogeneous colors on targets. According to the analysis of the reaction time through the non-parametric statistical method, a calculation method of the cognitive performance of each color is proposed. Based on the calculation of the color differences and the accumulation of the reaction times, it is shown that with the different saturated distractors of homogeneous colors, the high saturated yellow targets perform better than the low saturated ones, and the green and blue targets have moderate performances. When searching for a singleton target placed oll a black background, the color difference between the target and the distractor should be more than 20AE*ab units in the yellow saturation coding, whereas the color difference should be more than 40△E*ab units in the blue and green saturation coding. In addition, as regards saturation coding, the influence of the color difference between the target and the background on cognitive performance is greater than that of the color difference between the target and the distractor. Seemingly, the hue attribute determines whether the saturation difference between the target and the distractor affects thc cognitive performance. Based on the experimental results, the simulation design of the instrument dials in a flight situation awareness interface is completed and tested. Simulation results show the feasibility of the method of choosing the target and distractor colors, and the proposed research provides the instruction for the color saturation design of the interface.
基金supported by National Key R&D Program of China[grant number 2017YFC0703502]the National Natural Science Foundation of China(NSFC)[grant numbers 51978345,51678310 and 51708304]K.C.Wong Magna Fund at the Ningbo University.
文摘The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steelbamboo interface is the premise of composite effect.13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test,and the strain difference analysis method was proposed to study the distribution of shear stress.The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood.The shear stress is not evenly distributed along the longitudinal direction of the interface,showing a shape of“larger at two ends and smaller in the middle”.The lower end of the interface is the initial location of the interface failure and the shear stress concentration degree is positively correlated with the thickness of the externally bonded bamboo plate.The shear resistance of steel-bamboo interface can be enhanced by improving the adhesion between steel and structural adhesive and ameliorating the quality of bamboo products.
文摘Quality of Service is an important attribute of a software system. In retrospect, performance assessment based on user interaction with the system has given a better understanding of underlying disciplines of the product. In this paper, we capture user interaction with the prototype/User Interface (UI). An approach for developing activity model from the user interface model is presented using workflows and functional elements. A methodology is proposed to transform UI into activity diagram. The approach is validated by an experimental setup using Amazon service. The performance of Amazon service is assessed using activity based performance prediction methodology, and the simulation results are obtained using SMTQA.
基金supported by the National Natural Science Foundation of China(No.51821005)。
文摘Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electrolyte distribution with varied particle sizes is tuned to construct solid-state batteries with excellent performance at different operating temperatures.Solid-state batteries with the configuration S/L(small-sized SE in composite cathode and large-sized SE in electrolyte layer)show the best performance at room temperature(168 mA h g^(−1) at 0.2 C,retention of 99%,100 cycles)and−20°C(89 mA h g^(−1) at 0.05 C),while the configuration S/S displays better performance at elevated temperature.The superior performance of S/L battery is associated with faster lithium-ion dynamics due to the better solid/solid interface between active materials and electrolytes.Moreover,the inferior performance at 60℃is caused by the formation of voids and cracks in the electrolyte layer during cycling.In contrast,the S/S battery delivers superior performance at elevated operating temperature because of the integrated structure.This work confirms that tailoring electrolyte size has significant effect on fabricating all-climate solid-state batteries.
文摘As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corresponding flexural performance of the lap spliced construction joint. After having slowed down the strength development of the concrete placed in the joint of the precast deck by means of a curing retardant, the concrete at the interface is crushed so as to expose the steel fibers and the change in the flexural performance is observed experimentally according to the exposure of the steel fibers. The results show that, even if the ultimate strength and stiffness of the UHPC precast deck including the joint are mostly determined by the arrangement details of the rebar lap splice, the exposure of the steel fibers can secure stable ductile behavior and reduce the width of the cracks generated at the precast deck-joint interface under service load.
文摘This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 10<sup>13</sup> cm<sup>-2</sup>, we obtained a good efficiency of 22.9% when -0.1 eV analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV.
基金supported by the National Key Basic Research Program of China (No.2014CB932400)Joint Fund of the National Natural Science Foundation of China (No.U1401243)+2 种基金National Natural Science Foundation of China (No.51232005)Shenzhen Technical Plan Project (No.JCYJ20150529164918735,CYJ20170412170911187,KQJSCX20160226191136)Guangdong Technical Plan Project (No.2015TX01N011)。
文摘In this work, the electrochemical performance of LiNi0.8Co0.1Mn0.1O2(NCM811) has been investigated after cycling with various upper cutoff voltages. Noteworthily, electrochemical impedance of NCM811 declined with the increasing cycle number to high voltages. It was found that the decline of charge transfer impedance could be related to the structural and compositional change of cathode electrolyte interphase(CEI) of NCM811 when charging to high voltages, based on the characterization of electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The corresponding mechanism has also been proposed in this study. Specifically, due to the increasing roughness of cathode surface, the bottom of CEI film and cubic phase on cathode surface form a transition region mainly at high voltages, leading to the nonobvious boundary. This newly formed transition region at high voltages could promote the Li ion diffusion from electrolyte to cathode, then reducing charge transfer impedance. Additionally, the decrease of Li F on the surface of the cathode could also make a contribution to lower the interface impedance. This study delivers a different evolution of CEI on NCM811, and the impact of CEI evolution on electrochemical performance when charging to a high voltage.
基金the partial financial support from the National Natural Science Foundation of China (22075171,21805182 and 22179080)。
文摘Thin and flexible composite solid-state electrolyte(SSE) is considered to be a prospective candidate for lithium-oxygen(Li-O_(2)) batteries with the aim to address the problems of unsatisfied safety, terrible durability as well as inferior electrochemical performance. Herein, in order to improve the safety and durability, a succinonitrile(SN) modified composite SSE is proposed. In this SSE, SN is introduced for eliminating the boundary between ceramic particles, increasing the amorphous region of polymer and ensuring fast ionic transport. Subsequently, the symmetric battery based on the proposed SSE achieves a long cycle life of 3000 h. Moreover, the elaborate cathode interface through the SN participation effectively reduces the barriers to the combination between lithium ions and electrons, facilitating the corresponding electrochemical reactions.As a result, the solid-state Li-O_(2)battery based on this SSE and tuned cathode interface achieves improved electrochemical performance including large specific capacity over 12,000 m Ah g^(-1), enhanced rate capacity as well as stable cycle life of 54 cycles at room temperature. This ingenious design provides a new orientation for the evolution of solid-state Li-O_(2)batteries.
基金financially supported by the Scientific and Technological Plan Projects of Guangzhou City(202103040001)。
文摘This work develops 2-Phenyl-1H-imidazole-1-sulfonate(PHIS)as a multi-functional electrolyte additive for H2O/HF scavenging and film formation to improve the high temperature performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite batteries.After 450 cycles at room temperature(25℃),the discharge capacity retentions of batteries with blank and PHIS-containing electrolyte are 56.03%and 94.92%respectively.After 230 cycles at high temperatures(45℃),their values are 75.30%and 88.38%respectively.The enhanced electrochemical performance of the batteries with PHIS-containing electrolyte is supported by the spectroscopic characterization and theoretical calculations.It is demonstrated that this PHIS electrolyte additive can facilitate the construction of the electrode interface films,remove the H2O/HF in the electrolyte,and improve the electrochemical performance of the batteries.This work not only develops a sulfonate-based electrolyte but also can stimulate new ideas of functional additives to improve the battery performance.
文摘By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density.
基金financially supported by the National Natural Science Foundation of China(Nos.61604119,61704131,and 61804111)Initiative Postdocs Supporting Program(No.BX20180234)+2 种基金China Postdoctoral Science Foundation(No.2018M643578)Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)Fundamental Research Funds for the Central Universities.
文摘Interface engineering has been regarded as an effective and noninvasive means to optimize the performance of perovskite solar cells(PSCs).Here,doping engineering of a ZnO electron transport layer(ETL)and CsPbI3/ZnO interface engineering via introduction of an interfacial layer are employed to improve the performances of CsPbI3-based PSCs.The results show that when introducing a TiO2 buffer layer while increasing the ZnO layer doping concentration,the open-circuit voltage,power conversion efficiency,and fill factor of the CsPbI3-based PSCs can be improved to 1.31 V,21.06%,and 74.07%,respectively,which are superior to those of PSCs only modified by the TiO2 buffer layer or high-concentration doping of ZnO layer.On the one hand,the buffer layer relieves the band bending and structural disorder of CsPbI3.On the other hand,the increased doping concentration of the ZnO layer improves the conductivity of the TiO2/ZnO bilayer ETL because of the strong interaction between the TiO2 and ZnO layers.However,such phenomena are not observed for those of a PCBM/ZnO bilayer ETL because of the weak interlayer interaction of the PCBM/ZnO interface.These results provide a comprehensive understanding of the CsPbI3/ZnO interface and suggest a guideline to design high-performance PSCs.
文摘Fe/Tb multilayers with various Fe layer thickness and fixed Tb layer thickness were prepared by e-beam alternate vapor deposition. Analyses of the microstructure of these films show that the magnetic performance is strongly affected by the interface structure. Fe in the films evolved to amorphous phase and the Fe/Tb interface became indiscernible with decreasing Fe thickness. At the same time, the film was observed to perform superparamagnetically, which is quite different from the ferromagnetic behavior of Fe/Tb multilayers that have sharp Fe/Tb interface. Our work shows that the interface roughness has strong influence to the properties of magnetic multilayers.