By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind...By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.展开更多
Building cooling, heating and power (BCHP) systems should play an important role in achieving the goals of energy efficient use and environment protection in China. It will make big sense when this type of system show...Building cooling, heating and power (BCHP) systems should play an important role in achieving the goals of energy efficient use and environment protection in China. It will make big sense when this type of system shows a good performance energetically and economically. An on-site BCHP system being the first in the country was installed and put to use five years ago. As the first step to evaluate the project, computations were made based on thermodynamic and thermoeconomic theories to evaluate the system on full load and off-design conditions in summer. Discussion and analyses are made mainly in terms of exergetic efficiency and costs of unit amount of useful exergy produced in this paper.展开更多
Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded...Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges.In the procedure,the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties,and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis.The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components.Furthermore,the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared.The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution).The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures.The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures.However,the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures.展开更多
This research evaluated the suitability of stone dust in the design and production of High Perfor-mance Concrete (HPC). HPC mix was designed, tested, costed and a comparison of concrete classes used in the market (Cla...This research evaluated the suitability of stone dust in the design and production of High Perfor-mance Concrete (HPC). HPC mix was designed, tested, costed and a comparison of concrete classes used in the market (Class 25, 30 and 35) done using Cost Benefit Analysis (CBA). The cost benefit was analyzed using Internal Rate of Return (IRR) and Net Present Value (NPV). Laboratory tests established the properties concrete obtained from the design mix. Compressive strength, slump, and modulus of elasticity were tested and analyzed. Structural analysis using BS 8110 was done for a 10 storey office building to establish the structural member sizes. Members obtained from concrete Classes 25, 30, 35 and the new compressive strengths from HPC (Class 80) were obtained and compared. Analysis was done for structural members’ sizes and area freed as a result of de-signing with HPC as well as the steel reinforcement used. To justify the initial cost of HPC if ado- pted, the Cost Benefit Analysis (CBA) was used to estimate increased costs versus income resulting from increased let table space created. The minimum class of concrete used in design was limited to Class 25 N/mm2. The research shows that it is possible to manufacture high strength concrete using locally available stone dust. The stone dust sampled from Mlolongo quarries achieved a characteristic strength of 86.7 N/mm2 at a water cement ratio of 0.32. With the results structural analysis of a 10 storey office structures with columns spaced at 8 meters center to center was de-signed using the four classes and results compared. There was a reduction of columns from 1.2 m wide to 0.65 m wide (over 45%) when concrete class changes from Class 25 to Class 80 creating over 3% of the total space area per floor. Cost benefit analysis using Net Present Value (NPV) and Internal Rate of Return (IRR) presented business case for the use of HPC. With Class 80, the IRR was at 3% and NPV being 8% of the total initial investment. The steel reinforcement increased by 8.64% using Class 30, 11.68% using Class 35 and reduced by 8.37% at Class 80. Further analysis needs to be done to understand the trend of steel reinforcement keeping all the member sizes the same. In this study the member sizes were optimized based on the steel reinforcement and serviceability. This paper provides useful information to design Engineers and Architects and inform future design of multi storey structures.展开更多
A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was i...A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250- 300 ma/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ( "1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (〈 2%). This study provides a useful approach for the optimization of process operation and control.展开更多
In this study,we explore the causes and performance outcomes of switching costs in the context of new product development(NPD)from both the supplier and customer perspectives,and discuss the role that switching costs ...In this study,we explore the causes and performance outcomes of switching costs in the context of new product development(NPD)from both the supplier and customer perspectives,and discuss the role that switching costs play as moderators and mediators in the relationship between social capital and NPD performance.Based on data from 214 Chinese manufacturers,we employ the structural equation model to test our conceptual model and hypotheses.The results indicate that relationship quality and customer involvement positively and negatively affect switching costs,respectively,and that switching costs negatively affect NPD performance.Switching costs mediate and moderate the relationship between social capital and NPD performance.Furthermore,switching costs significantly and positively moderate the relationship between relationship quality and NPD performance.On the other hand,switching costs insignificantly and negatively moderate the relationship between customer involvement and NPD performance.The theoretical and managerial implications of the findings are discussed.展开更多
The environmental and energy problems that have arisen in Turkey because of the dramatically increase in energy consumption require the implementation of energy efficiency and microgeneration measures in the building ...The environmental and energy problems that have arisen in Turkey because of the dramatically increase in energy consumption require the implementation of energy efficiency and microgeneration measures in the building sector which is the main sector of primary energy consumption. Since Turkey is highly dependent on exported energy resources, the basic energy policy approach is based on providing the supply security. In this regard, supporting for in situ energy production, encouraging the use of renewable energy sources and the systems such as microgeneration systems in order to meet the energy requirements of buildings would be considered as a key measure for resolving the energy related challenges of Turkey and dealing with the sustainability issues. Turkey’s geographical location has several advantages for extensive use of most of the renewable energy sources such as especially solar energy. However, this huge solar energy potential is not being used sufficiently in residential building sector which is responsible for the great energy consumption of Turkey. Therefore, this paper aims to introduce a study which investigates, on a life cycle basis, the environmental and the economic sustainability of solar Photovoltaic (PV) microgenerators to promote the implementation of this system as an option for the renovation of existing residential buildings in Turkey. In this study, main parameters which were related to the distribution of modules to be installed in flat roofs and facades and the evaluation of the PV systems were taken into account. The effect of these parameters on energy generation of PV systems was analyzed in a case study considering different climate zones of Turkey;and the decrease in the existing energy consumption of the reference building was calculated.展开更多
The Earthquake can be considered as a natural phenomenon or a disaster based on the seismic response of structures during a severe earthquake that plays a vital role in the extent of structural damage and resulting in...The Earthquake can be considered as a natural phenomenon or a disaster based on the seismic response of structures during a severe earthquake that plays a vital role in the extent of structural damage and resulting injuries and losses. It is necessary to predict the performance of the existing structures and structures at the design stage when it subjected to an earthquake load. Also, it is needed to predict the repair cost required for the rehabilitation of the existing buildings that is insufficient in seismic resistance, and the construction cost and the expected repairing cost for the structures at the design stage that designed to have a ductile behavior with acceptable cracks. This study aims to propose a method for seismic performance evaluation for existing and new structures depending on the width of cracks resulted from the seismic exposure. Also, it assesses the effect of building performance during earthquakes on its life cycle cost. FEMA 356 criteria were used to predict the building responses due to seismic hazard. A case study of seven-story reinforced concrete building designed by four design approaches and then analyzed by static nonlinear pushover analysis to predict its response and performance during earthquake events using Sap 2000 software. The first design approach is to design the building to resist gravity loads only by using ECP code. The second one is to design the building to resist gravity loads and seismic loads by using static linear analysis according to ECP code. The third one is to design the building to resist gravity loads and seismic loads by using static linear analysis according to the regulations of the Egyptian Society of Earthquake Engineering (ESEE). Finally the fourth one is to design the building as the second approach but with ground acceleration greater by five times than it or by using ductility factor R = 1. The methodology followed in this study provides initial guidelines, and steps required to assess the seismic performance and the cost associated with using a variety of design methods for reinforced concrete structures resisting earthquakes, selecting the retrofitting strategies that would be indicated to repair the structure after an earthquake.展开更多
Based on comparative analysis of different perspectives related to enterprise strategic cost management or strategic management process, the author considers that the process of strategic cost management includes two ...Based on comparative analysis of different perspectives related to enterprise strategic cost management or strategic management process, the author considers that the process of strategic cost management includes two major steps as strategy formulation and strategy implementation. The cost strategic management methods can be classified as cost strategy formulation methods and implementation methods according to the strategic cost management process; and the cost strategy implementation methods are divided into strategy implementation basis confirmation method, organizational implementation method, supervision (surveillance) and variance (performance) analysis & adjustment method according to the contents to be implemented.展开更多
The conjugated mode of bound states in a continuum is integrated as a narrowband wavelength extraction unit.A low-cost and easy-to-prepare strategy,using solution-processable semiconductors,has been demonstrated to fo...The conjugated mode of bound states in a continuum is integrated as a narrowband wavelength extraction unit.A low-cost and easy-to-prepare strategy,using solution-processable semiconductors,has been demonstrated to form a new platform for on-chip spectral analysis.展开更多
基金supported by General Motors (Low-cost Hybrid Electric Propulsion System)
文摘By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.
文摘Building cooling, heating and power (BCHP) systems should play an important role in achieving the goals of energy efficient use and environment protection in China. It will make big sense when this type of system shows a good performance energetically and economically. An on-site BCHP system being the first in the country was installed and put to use five years ago. As the first step to evaluate the project, computations were made based on thermodynamic and thermoeconomic theories to evaluate the system on full load and off-design conditions in summer. Discussion and analyses are made mainly in terms of exergetic efficiency and costs of unit amount of useful exergy produced in this paper.
基金Basic Scientific Research Service Project of Centrallevel Public Welfare Research Institute(No.2016-9018)
文摘Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code,the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges.In the procedure,the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties,and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis.The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components.Furthermore,the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared.The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution).The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures.The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures.However,the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures.
文摘This research evaluated the suitability of stone dust in the design and production of High Perfor-mance Concrete (HPC). HPC mix was designed, tested, costed and a comparison of concrete classes used in the market (Class 25, 30 and 35) done using Cost Benefit Analysis (CBA). The cost benefit was analyzed using Internal Rate of Return (IRR) and Net Present Value (NPV). Laboratory tests established the properties concrete obtained from the design mix. Compressive strength, slump, and modulus of elasticity were tested and analyzed. Structural analysis using BS 8110 was done for a 10 storey office building to establish the structural member sizes. Members obtained from concrete Classes 25, 30, 35 and the new compressive strengths from HPC (Class 80) were obtained and compared. Analysis was done for structural members’ sizes and area freed as a result of de-signing with HPC as well as the steel reinforcement used. To justify the initial cost of HPC if ado- pted, the Cost Benefit Analysis (CBA) was used to estimate increased costs versus income resulting from increased let table space created. The minimum class of concrete used in design was limited to Class 25 N/mm2. The research shows that it is possible to manufacture high strength concrete using locally available stone dust. The stone dust sampled from Mlolongo quarries achieved a characteristic strength of 86.7 N/mm2 at a water cement ratio of 0.32. With the results structural analysis of a 10 storey office structures with columns spaced at 8 meters center to center was de-signed using the four classes and results compared. There was a reduction of columns from 1.2 m wide to 0.65 m wide (over 45%) when concrete class changes from Class 25 to Class 80 creating over 3% of the total space area per floor. Cost benefit analysis using Net Present Value (NPV) and Internal Rate of Return (IRR) presented business case for the use of HPC. With Class 80, the IRR was at 3% and NPV being 8% of the total initial investment. The steel reinforcement increased by 8.64% using Class 30, 11.68% using Class 35 and reduced by 8.37% at Class 80. Further analysis needs to be done to understand the trend of steel reinforcement keeping all the member sizes the same. In this study the member sizes were optimized based on the steel reinforcement and serviceability. This paper provides useful information to design Engineers and Architects and inform future design of multi storey structures.
基金supported by the National Natural Science Foundation of China (No.20921140094)the Chinese Academy of Sciences (No.KZCX2-YW-JC407)
文摘A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250- 300 ma/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ( "1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (〈 2%). This study provides a useful approach for the optimization of process operation and control.
基金supported by the Nature Science Foundation of China,China(No.71832011)Innovation Capability SupportProgram of Shaanxi,China(No.2023-CX-RKX-139)+2 种基金Humanities and Social Science Youth Foundation of Ministry of Educationof China,China(No.22YJC630173)Social Science Foundation of Shaanxi Province,China(No.2020R033)the YouthInnovation Team of Shaanxi Universities,China.
文摘In this study,we explore the causes and performance outcomes of switching costs in the context of new product development(NPD)from both the supplier and customer perspectives,and discuss the role that switching costs play as moderators and mediators in the relationship between social capital and NPD performance.Based on data from 214 Chinese manufacturers,we employ the structural equation model to test our conceptual model and hypotheses.The results indicate that relationship quality and customer involvement positively and negatively affect switching costs,respectively,and that switching costs negatively affect NPD performance.Switching costs mediate and moderate the relationship between social capital and NPD performance.Furthermore,switching costs significantly and positively moderate the relationship between relationship quality and NPD performance.On the other hand,switching costs insignificantly and negatively moderate the relationship between customer involvement and NPD performance.The theoretical and managerial implications of the findings are discussed.
文摘The environmental and energy problems that have arisen in Turkey because of the dramatically increase in energy consumption require the implementation of energy efficiency and microgeneration measures in the building sector which is the main sector of primary energy consumption. Since Turkey is highly dependent on exported energy resources, the basic energy policy approach is based on providing the supply security. In this regard, supporting for in situ energy production, encouraging the use of renewable energy sources and the systems such as microgeneration systems in order to meet the energy requirements of buildings would be considered as a key measure for resolving the energy related challenges of Turkey and dealing with the sustainability issues. Turkey’s geographical location has several advantages for extensive use of most of the renewable energy sources such as especially solar energy. However, this huge solar energy potential is not being used sufficiently in residential building sector which is responsible for the great energy consumption of Turkey. Therefore, this paper aims to introduce a study which investigates, on a life cycle basis, the environmental and the economic sustainability of solar Photovoltaic (PV) microgenerators to promote the implementation of this system as an option for the renovation of existing residential buildings in Turkey. In this study, main parameters which were related to the distribution of modules to be installed in flat roofs and facades and the evaluation of the PV systems were taken into account. The effect of these parameters on energy generation of PV systems was analyzed in a case study considering different climate zones of Turkey;and the decrease in the existing energy consumption of the reference building was calculated.
文摘The Earthquake can be considered as a natural phenomenon or a disaster based on the seismic response of structures during a severe earthquake that plays a vital role in the extent of structural damage and resulting injuries and losses. It is necessary to predict the performance of the existing structures and structures at the design stage when it subjected to an earthquake load. Also, it is needed to predict the repair cost required for the rehabilitation of the existing buildings that is insufficient in seismic resistance, and the construction cost and the expected repairing cost for the structures at the design stage that designed to have a ductile behavior with acceptable cracks. This study aims to propose a method for seismic performance evaluation for existing and new structures depending on the width of cracks resulted from the seismic exposure. Also, it assesses the effect of building performance during earthquakes on its life cycle cost. FEMA 356 criteria were used to predict the building responses due to seismic hazard. A case study of seven-story reinforced concrete building designed by four design approaches and then analyzed by static nonlinear pushover analysis to predict its response and performance during earthquake events using Sap 2000 software. The first design approach is to design the building to resist gravity loads only by using ECP code. The second one is to design the building to resist gravity loads and seismic loads by using static linear analysis according to ECP code. The third one is to design the building to resist gravity loads and seismic loads by using static linear analysis according to the regulations of the Egyptian Society of Earthquake Engineering (ESEE). Finally the fourth one is to design the building as the second approach but with ground acceleration greater by five times than it or by using ductility factor R = 1. The methodology followed in this study provides initial guidelines, and steps required to assess the seismic performance and the cost associated with using a variety of design methods for reinforced concrete structures resisting earthquakes, selecting the retrofitting strategies that would be indicated to repair the structure after an earthquake.
文摘Based on comparative analysis of different perspectives related to enterprise strategic cost management or strategic management process, the author considers that the process of strategic cost management includes two major steps as strategy formulation and strategy implementation. The cost strategic management methods can be classified as cost strategy formulation methods and implementation methods according to the strategic cost management process; and the cost strategy implementation methods are divided into strategy implementation basis confirmation method, organizational implementation method, supervision (surveillance) and variance (performance) analysis & adjustment method according to the contents to be implemented.
文摘The conjugated mode of bound states in a continuum is integrated as a narrowband wavelength extraction unit.A low-cost and easy-to-prepare strategy,using solution-processable semiconductors,has been demonstrated to form a new platform for on-chip spectral analysis.