With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ...With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performan...In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.展开更多
The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and e...The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.展开更多
When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed...When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.展开更多
Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional id...Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.展开更多
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research an...As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.展开更多
It is well known that no criterion about seismic design for risers is available, and relevant research has not been reported. A comprehensive study of riser dynamics during earthquakes is performed in this paper. A dy...It is well known that no criterion about seismic design for risers is available, and relevant research has not been reported. A comprehensive study of riser dynamics during earthquakes is performed in this paper. A dynamic model for seismic analysis of risers is developed in accordance with the working environment of the risers and the influence of inertia force of the pipelines. The dynamic equations for the developed model are derived and resolved on the basis of the energy theory of beams. Numerical simulation for an engineering project in the Bohai Oil Field, China shows that the fundamental frequency of the riser plays the major role in the seismic responses, and for platforms in shallow water in Bohai Bay, the risers demonstrate a much lower stress response due to prominent differences between the riser frequency and the earthquake wave frequency. The presented model and its corresponding method for seismic analysis are practical and important for riser design resistant to earthquake waves.展开更多
This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degr...This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degree of freedom (SDOF) system using a simple and intuitive process. The proposed method is intended for evaluating the seismic performance of the buildings at the intermediate stages in design, while a rigorous method would be applied to the final design. The performance of the method is evaluated using a series of buildings which are assumed to be located in Victoria in western Canada, and designed based on the upcoming version of the National Building Code of Canada which is due to be published in 2005. To resist lateral loads, some of these buildings contain reinforced concrete moment resisting frames, while others contain reinforced concrete shear walls. Each building model has been subjected to a set of site-specific seismic spectrum compatible ground motion records, and the response has been determined using the proposed method and the general method for MDOF systems. The results from the study indicate that the proposed method can serve as a useful tool for evaluation of seismic performance of buildings, and carrying out performance based design.展开更多
Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundatio...Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.展开更多
文摘With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.
文摘In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.
基金Chinese National Natural Science Foundation with the grant No.59895410the China Basic Research and Development Project:the Mechanism and Prediction of the Strong Earthquake of the Continental under the Grant No.95130603
文摘The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.
基金National Natural Science Foundation of China under Grant Nos.51978543,52108444,and 51778343Plan of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in the Universities of Hubei Province with Project No.T2020010Natural Science Foundation of Hebei Province under Grant No.E2021512001。
文摘When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.
文摘Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.
基金National Natural Science Foundation Project under Grant No.91315301-4National Key Technology R&D Program under Grant No.2012BAJ13B02
文摘As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.
基金supported by the National Natural Science Foundation of China (granted number 50979113)funded by the National 863 Program of China (granted number 2006AA09A105)
文摘It is well known that no criterion about seismic design for risers is available, and relevant research has not been reported. A comprehensive study of riser dynamics during earthquakes is performed in this paper. A dynamic model for seismic analysis of risers is developed in accordance with the working environment of the risers and the influence of inertia force of the pipelines. The dynamic equations for the developed model are derived and resolved on the basis of the energy theory of beams. Numerical simulation for an engineering project in the Bohai Oil Field, China shows that the fundamental frequency of the riser plays the major role in the seismic responses, and for platforms in shallow water in Bohai Bay, the risers demonstrate a much lower stress response due to prominent differences between the riser frequency and the earthquake wave frequency. The presented model and its corresponding method for seismic analysis are practical and important for riser design resistant to earthquake waves.
文摘This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degree of freedom (SDOF) system using a simple and intuitive process. The proposed method is intended for evaluating the seismic performance of the buildings at the intermediate stages in design, while a rigorous method would be applied to the final design. The performance of the method is evaluated using a series of buildings which are assumed to be located in Victoria in western Canada, and designed based on the upcoming version of the National Building Code of Canada which is due to be published in 2005. To resist lateral loads, some of these buildings contain reinforced concrete moment resisting frames, while others contain reinforced concrete shear walls. Each building model has been subjected to a set of site-specific seismic spectrum compatible ground motion records, and the response has been determined using the proposed method and the general method for MDOF systems. The results from the study indicate that the proposed method can serve as a useful tool for evaluation of seismic performance of buildings, and carrying out performance based design.
文摘Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.