The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate ...The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of gOO cm^2 /V.s at room temperature and it decreases to 45 cm^2 /V.s for 20 K due to the increase of n0. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.展开更多
In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculati...In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculations coupled with the incoherent charge-hopping model.Moreover,the hole carrier mobility of BFBPD thin-film was also estimated with the aid of an amorphous cell including 100 BFBPD molecules.Results revealed that the BFBPD-PC61 BM system possesses a middle-sized open-circuit voltage of 0.70 V,large short-circuit current density of 17.26 mA ·cm^-2,high fill factor of 0.846,and power conversion efficiency of 10%.With the Marcus model,in the BFBPD-PC61 BM interface,the exciton-dissociation rate,kdis,was predicted to be 2.684×10^13 s^-1,which is as 3-5 orders of magnitude large as the decay(radiative and non-radiative) one(10-8-10^10s^-1),indicating a high exciton-dissociation efficiency of 100% in the BFBPD-PC61 BM interface.Furthermore,by the molecular dynamics simulation,the hole mobility of BFBPD thin-film was predicted to be as high as 1.265 × 10^-2 cm-2·V^-1·s^-1,which can be attributed to its dense packing in solid state.展开更多
Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.S...Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.展开更多
The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional ...The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop(PLL), which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying(BPSK) and Quadrature Phase Shift Keying(QPSK) signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals,respectively. With these critical standard deviations, lock thresholds are increased from à12 andà4 d B to 3 and à2 d B, respectively.展开更多
文摘The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of gOO cm^2 /V.s at room temperature and it decreases to 45 cm^2 /V.s for 20 K due to the increase of n0. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.
基金supported by the National Natural Science Foundation of China(No.21373132,No.21603133)the Education Department of Shaanxi Provincial Government Research Projects(No.16JK1142,No.16JK1134)the Scientific Research Foundation of Shaanxi University of Technology for Recruited Talents(No.SLGKYQD2-13,No.SLGKYQD2-10,No.SLGQD14-10)
文摘In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculations coupled with the incoherent charge-hopping model.Moreover,the hole carrier mobility of BFBPD thin-film was also estimated with the aid of an amorphous cell including 100 BFBPD molecules.Results revealed that the BFBPD-PC61 BM system possesses a middle-sized open-circuit voltage of 0.70 V,large short-circuit current density of 17.26 mA ·cm^-2,high fill factor of 0.846,and power conversion efficiency of 10%.With the Marcus model,in the BFBPD-PC61 BM interface,the exciton-dissociation rate,kdis,was predicted to be 2.684×10^13 s^-1,which is as 3-5 orders of magnitude large as the decay(radiative and non-radiative) one(10-8-10^10s^-1),indicating a high exciton-dissociation efficiency of 100% in the BFBPD-PC61 BM interface.Furthermore,by the molecular dynamics simulation,the hole mobility of BFBPD thin-film was predicted to be as high as 1.265 × 10^-2 cm-2·V^-1·s^-1,which can be attributed to its dense packing in solid state.
基金the financial support by the National Natural Science Foundation of China(51406214 and51406208)supported by the Natural science Foundation of Guangdong Province(2015A030313719)the Science&Technology Research Project of Guangdong Province(2013B050800008)
文摘Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.
基金co-supported by the National Basic Research Program of China (No. 2014CB340205)the Natural Science Foundation of Shaanxi Provincial Department of Education (No. 2016JM6016)the National Natural Science Foundation of China (No. 61473228)
文摘The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop(PLL), which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying(BPSK) and Quadrature Phase Shift Keying(QPSK) signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals,respectively. With these critical standard deviations, lock thresholds are increased from à12 andà4 d B to 3 and à2 d B, respectively.