期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Pericytes protect rats and mice from sepsis-induced injuries by maintaining vascular reactivity and barrier function:implication of miRNAs and microvesicles 被引量:1
1
作者 Zi-Sen Zhang Yi-Yan Liu +10 位作者 Shuang-Shuang He Dai-Qin Bao Hong-Chen Wang Jie Zhang Xiao-Yong Peng Jia-Tao Zang Yu Zhu Yue Wu Qing-Hui Li Tao Li Liang-Ming Liu 《Military Medical Research》 SCIE CAS CSCD 2024年第1期1-18,共18页
Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity... Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity and tension,are protective against sepsis via regulating vascular reactivity and permeability.Methods We conducted a series of in vivo experiments using wild-type(WT),platelet-derived growth factor receptor-β(PDGFR-β)-Cre+mT/mG transgenic mice and Tie2-Cre+Cx43^(flox/flox)mice to examine the relative contribution of pericytes in sepsis,either induced by cecal ligation and puncture(CLP)or lipopolysaccharide(LPS)challenge.In a separate set of experiments with Sprague-Dawley(SD)rats,pericytes were depleted using CP-673451,a selective PDGFR-βinhibitor,at a dosage of 40 mg/(kg·d)for 7 consecutive days.Cultured pericytes,vascular endothelial cells(VECs)and vascular smooth muscle cells(VSMCs)were used for mechanistic investigations.The effects of pericytes and pericyte-derived microvesicles(PCMVs)and candidate miRNAs on vascular reactivity and barrier function were also examined.Results CLP and LPS induced severe injury/loss of pericytes,vascular hyporeactivity and leakage(P<0.05).Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization(P<0.05).Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels(P<0.05).Additionally,PCMVs transferred miR-145 and miR-132 to VSMCs and VECs,respectively,exerting a protective effect on vascular reactivity and barrier function after sepsis(P<0.05).miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2(Sphk2)/sphingosine-1-phosphate receptor(S1PR)1/phosphorylation of myosin light chain 20 pathway,whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways.Conclusions Pericytes are protective against sepsis through regulating vascular reactivity and barrier function.Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs. 展开更多
关键词 PERICYTE Vascular reactivity Vascular permeability CX43 MICROVESICLE
下载PDF
Biology and function of pericytes in the vascular microcirculation 被引量:1
2
作者 Yue Wu Jiaqi Fu +10 位作者 Yuxia Huang Ruowang Duan Wentian Zhang Caihong Wang Shang Wang Xiaoyi Hu Hui Zhao Lan Wang Jinming Liu Guosheng Gao Ping Yuan 《Animal Models and Experimental Medicine》 CAS CSCD 2023年第4期337-345,共9页
Pericytes are the main cellular components of tiny arteries and capillaries.Studies have found that pericytes can undergo morphological contraction or relaxation under stimulation by cytokines,thus affecting the contr... Pericytes are the main cellular components of tiny arteries and capillaries.Studies have found that pericytes can undergo morphological contraction or relaxation under stimulation by cytokines,thus affecting the contraction and relaxation of microvessels and playing an essential role in regulating vascular microcirculation.Moreover,due to the characteristics of stem cells,pericytes can differentiate into a variety of inflammatory cell phenotypes,which then affect the immune function.Additionally,pericytes can also participate in angiogenesis and wound healing by interacting with endothelial cells in vascular microcirculation disorders.Here we review the origin,biological phenotype and function of pericytes,and discuss the potential mechanisms of pericytes in vascular microcirculation disorders,especially in pulmonary hypertension,so as to provide a sound basis and direction for the prevention and treatment of vascular microcirculation diseases. 展开更多
关键词 INFLAMMATION pericytes PLURIPOTENCY vascular microcirculatory
下载PDF
TNFSF15 facilitates the differentiation of CD11b^(+) myeloid cells into vascular pericytes in tumors
3
作者 Xiangxiang Gu Yipan Zhu +4 位作者 Cancan Zhao Yixin Cao Jingying Wang Qiangzhe Zhang Luyuan Li 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第11期869-884,共16页
Objective:Immature vasculature lacking pericyte coverage substantially contributes to tumor growth,drug resistance,and cancer cell dissemination.We previously demonstrated that tumor necrosis factor superfamily 15(TNF... Objective:Immature vasculature lacking pericyte coverage substantially contributes to tumor growth,drug resistance,and cancer cell dissemination.We previously demonstrated that tumor necrosis factor superfamily 15(TNFSF15)is a cytokine with important roles in modulating hematopoiesis and vascular homeostasis.The main purpose of this study was to explore whether TNFSF15 might promote freshly isolated myeloid cells to differentiate into CD11b^(+) cells and further into pericytes.Methods:A model of Lewis lung cancer was established in mice with red fluorescent bone marrow.After TNFSF15 treatment,CD11b^(+) myeloid cells and vascular pericytes in the tumors,and the co-localization of pericytes and vascular endothelial cells,were assessed.Additionally,CD11b^(+) cells were isolated from wild-type mice and treated with TNFSF15 to determine the effects on the differentiation of these cells.Results:We observed elevated percentages of bone marrow-derived CD11b^(+)myeloid cells and vascular pericytes in TNFSF15-treated tumors,and the latter cells co-localized with vascular endothelial cells.TNFSF15 protected against CD11b^(+)cell apoptosis and facilitated the differentiation of these cells into pericytes by down-regulating Wnt3a-VEGFR1 and up-regulating CD49e-FN signaling pathways.Conclusions:TNFSF15 facilitates the production of CD11b^(+) cells in the bone marrow and promotes the differentiation of these cells into pericytes,which may stabilize the tumor neovasculature. 展开更多
关键词 TNFSF15 myeloid cell NEOVASCULARIZATION CD11b^(+)cell PERICYTE
下载PDF
Wrapping up the role of pericytes in Parkinson's disease
4
作者 Taylor John Stevenson Birger Victor Dieriks 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2395-2396,共2页
Pericytes are classically defined as contra ctile cells within the central nervous system that regulate blood flow and permeability of the blood-brain barrier(BBB).This one-sided view is gradually changing,and pericyt... Pericytes are classically defined as contra ctile cells within the central nervous system that regulate blood flow and permeability of the blood-brain barrier(BBB).This one-sided view is gradually changing,and pericytes are now considered versatile cells that can switch their function in response to different stimuli(Uemura et al.,2020).In addition to their role as gatekeepers of the BBB and maintaining homeostasis of the brain’s microenvironment through adj usting the vascular intraluminal dia meter,pericytes are both sensors and initiators of inflammation. 展开更多
关键词 HOMEOSTASIS PERICYTE
下载PDF
Temporal alterations in pericytes at the acute phase of ischemia/reperfusion in the mouse brain 被引量:5
5
作者 Shuang Zhang Xue-Jing Liao +10 位作者 Jia Wang Yi Shen Han-Fen Shi Yan Zou Chong-Yang Ma Xue-Qian Wang Qing-Guo Wang Xu Wang Ming-Yang Xu Fa-Feng Cheng Wan-Zhu Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2247-2252,共6页
Pericytes,as the mural cells surrounding the microvasculature,play a critical role in the regulation of microcirculation;however,how these cells respond to ischemic stroke remains unclear.To determine the temporal alt... Pericytes,as the mural cells surrounding the microvasculature,play a critical role in the regulation of microcirculation;however,how these cells respond to ischemic stroke remains unclear.To determine the temporal alterations in pericytes after ischemia/reperfusion,we used the 1-hour middle cerebral artery occlusion model,which was examined at 2,12,and 24 hours after reperfusion.Our results showed that in the reperfused regions,the cerebral blood flow decreased and the infarct volume increased with time.Furthermore,the pericytes in the infarct regions contracted and acted on the vascular endothelial cells within 24 hours after reperfusion.These effects may result in incomplete microcirculation reperfusion and a gradual worsening trend with time in the acute phase.These findings provide strong evidence for explaining the“no-reflow”phenomenon that occurs after recanalization in clinical practice. 展开更多
关键词 acute ischemic stroke alpha-smooth muscle cerebral blood flow MICROCIRCULATION no-reflow phenomenon pericytes platelet endothelial cell adhesion molecule-1 platelet-derived growth factor receptor beta vascular endothelial cells
下载PDF
Establishment of the Culture Technique o f Pulmonary Vascular Pericytes and Its Identification in Rats 被引量:1
6
作者 张燕 熊密 +1 位作者 车东媛 袁永辉 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 1999年第1期24-27,共4页
Summary: In order to study the cellular origin of muscularization in non muscular arterioles of the lung, the pulmonary vascular pericytes culture was established. The terminal lung tissue of the rat was taken out a... Summary: In order to study the cellular origin of muscularization in non muscular arterioles of the lung, the pulmonary vascular pericytes culture was established. The terminal lung tissue of the rat was taken out and minced. Then 0.5 % of type Ⅳ collagenase solution was added for digestion and the microvascular segments were obtained by screening. The targeted cells were cultured by “selective conditioned media”. Under phase contrast microscope, the cultured cells were large in size with ragged margin and numerous pseudopodia, which imparted tubule like structure. There was no contact inhibition in growing cells, so multiple layers developed. When they were confluent, there were morphologically no “hillock and dale” growth pattern as in smooth muscle cells or “weave like” pattern as in fibroblasts. The ultrastructure of cultured cells showed numerous digital processes, moderate amount of rough and smooth endoplasmic reticulum, rich Golgi's apparatus, microfilaments, few lysosomes without myofilaments and dense bodies. Immunohistochemical staining revealed that the cultured pericytes had same kind of cellular skeletal protein, α SM actin, like smooth muscle cells. The cultured cells also exhibited positive reaction to CD 34 antigen and S 100 antigen, which were negative in smooth muscle cells and fibroblasts. The cell growth pattern, ultrastructure and immunological phenotype suggested that the cultured cells had characteristics of vascular pericytes. Pericytes are one of the components of microvascular cells, and the establishment of in vitro culture technique of pericytes is of significance for further exploration of the muscularization of non muscular arterioles in lung and the mechanism of structural remodeling of pulmonary vessels. 展开更多
关键词 cell culture pericytes α SM actin CD 34 S 100
下载PDF
The Effect of Hypoxia on Expression of Basic Fibroblast Growth Factor in Pulmonary Vascular Pericytes
7
作者 王林 熊密 +3 位作者 车东媛 刘绍春 郝春荣 郑晓静 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2000年第4期265-267,共3页
To examine whether hypoxia exerts effect on the expression of basic fibroblast growth ac- tor (bFGF) in pulmonary vascular pericytes (PC), cell culture, in .citu hybridization with probe of digoxigenin-11-dUTP-labled... To examine whether hypoxia exerts effect on the expression of basic fibroblast growth ac- tor (bFGF) in pulmonary vascular pericytes (PC), cell culture, in .citu hybridization with probe of digoxigenin-11-dUTP-labled cDNA, immunocytochemistry and image analysis were employed in this study. The results showed that the expression amount of bFGF mRNA and protein in PC of hypoxia (H) group was 1.31 times (P<0. 01) and 1. 17 times (P<0. 01) that of normoxia (N) group re- spectively. It suggests that hypoxia can directly enhance the expression of bFGF mRNA and protein in PC. Increased expression of bFGF may play an important role in the process of PC proliferation and differentiation of PC into smooth muscle-like cells. 展开更多
关键词 HYPOXIA basic fibroblast growth factor pulmonary hypertension pericytes
下载PDF
AB011.Live imaging of retinal pericytes:evidence for early calcium uptake,capillary constriction and vascular dysregulation in ocular hypertension glaucoma
8
作者 Luis Alarcon-Martinez Jorge L.Cueva Vargas +2 位作者 Nicolas Belforte Deborah Villafranca-Baughman Adriana Di Polo 《Annals of Eye Science》 2018年第1期417-417,共1页
Background:Pericytes are contractile cells that wrap along the walls of capillaries.In the brain,pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic d... Background:Pericytes are contractile cells that wrap along the walls of capillaries.In the brain,pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand.The contribution of pericytes to microvascular deficits in glaucoma is currently unknown.To address this,we used two-photon excitation microscopy for longitudinal monitoring of retinal pericytes and capillaries in a mouse glaucoma model.Methods:Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of albino mice expressing red fluorescent protein selectively in pericytes(NG2-DsRed).Minimally invasive,multiphoton imaging through the sclera of live NG2-DsRed mice was used to visualize pericytes and capillary diameter at one,two and three weeks after glaucoma induction.In vivo fluctuations in pericyte intracellular calcium were monitored with the calcium indicator Fluo-4.Ex vivo stereological analysis of retinal tissue prior to and after injection of microbeads was used to confirm our in vivo findings.Results:Live two-photon imaging of NG2-DsRed retinas demonstrated that ocular hypertension induced progressive accumulation of intracellular calcium in pericytes.Calcium uptake correlated directly with the narrowing of capillaries in the superficial,inner,and outer vascular plexuses(capillary diameter:naïve control=4.7±0.1μm,glaucoma=4.0±0.1μm,n=5-6 mice/group,Student’s t-test P<0.05).Frequency distribution analysis showed a substantial increase in the number of small-diameter capillaries(≤3μm)and a decrease in larger-diameter microvessels(≥5-9μm)at three weeks after induction of ocular hypertension(n=5-6 mice/group,Student’s t-test P<0.05).Conclusions:Our data support two main conclusions.First,two-photon excitation microscopy is an effective strategy to monitor longitudinal changes in retinal pericytes and capillaries in live animals at glaucoma onset and progression.Second,ocular hypertension triggers rapid intracellular calcium increase in retinal pericytes leading to substantial capillary constriction.This study identifies retinal pericytes as important mediators of early microvascular dysfunction in glaucoma. 展开更多
关键词 GLAUCOMA pericytes CAPILLARIES in vivo two-photon microscopy
下载PDF
Versatile subtypes of pericytes and their roles in spinal cord injury repair,bone development and repair 被引量:5
9
作者 Sipin Zhu Min Chen +8 位作者 Yibo Ying Qiuji Wu Zhiyang Huang Wenfei Ni Xiangyang Wang Huazi Xu Samuel Bennett Jian Xiao Jiake Xu 《Bone Research》 SCIE CAS CSCD 2022年第2期253-264,共12页
Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit(NVU),pericytes play an essential role in the maintenance of the vascular network of the spina... Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit(NVU),pericytes play an essential role in the maintenance of the vascular network of the spinal cord. To date, subtypes of pericytes have been identified by various markers, namely the PDGFR-β, Desmin, CD146, and NG2, each of which is involved with spinal cord injury(SCI) repair. In addition, pericytes may act as a stem cell source that is important for bone development and regeneration, whilst specific subtypes of pericyte could facilitate bone fracture and defect repair. One of the major challenges of pericyte biology is to determine the specific markers that would clearly distinguish the different subtypes of pericytes, and to develop efficient approaches to isolate and propagate pericytes. In this review, we discuss the biology and roles of pericytes, their markers for identification, and cell differentiation capacity with a focus on the potential application in the treatment of SCI and bone diseases in orthopedics. 展开更多
关键词 CD146 PERICYTE injury
下载PDF
Harnessing the stem cell properties of pericytes to repair the brain 被引量:4
10
作者 Jo-Maree Courtney Brad A.Sutherland 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第6期1021-1022,共2页
Over the last ten years or so,it has become apparent that pericytes have the potential to differentiate into other cell types which may help in the repair and regeneration of tissue after injury.In fact,pericytes have... Over the last ten years or so,it has become apparent that pericytes have the potential to differentiate into other cell types which may help in the repair and regeneration of tissue after injury.In fact,pericytes have been described as a precursor to mesenchymal stem cells.Their location at the interface between the microvasculature and the brain parenchyma means they are ideally positioned to initiate repair and regeneration in response to various factors.In this perspective,we will highlight how pericytes have stem cell potential alongside their role in regulating processes,such as angiogenesis and inflammation,and discuss how pericytes could be harnessed to promote tissue repair in the brain(Figure 1). 展开更多
关键词 PERICYTE INFLAMMATION FIGURE
下载PDF
Comparison of skeletal and soft tissue pericytes identifies CXCR4+ bone forming mural cells in human tissues 被引量:2
11
作者 Jiajia Xu Dongqing Li +13 位作者 Ching-Yun Hsu Ye Tian Leititia Zhang Yiyun Wang Robert J.Tower Leslie Chang Carolyn A.Meyers Yongxing Gao Kristen Broderick Carol Morris Jody E.Hooper Sridhar Nimmagadda Bruno Peault Aaron W.James 《Bone Research》 SCIE CAS CSCD 2020年第3期286-299,共14页
Human osteogenic progenitors are not precisely defined,being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells(MSCs).Notably,select human pericytes can develop into bone... Human osteogenic progenitors are not precisely defined,being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells(MSCs).Notably,select human pericytes can develop into bone-forming osteoblasts.Here,we sought to define the differentiation potential of CD146 f human pericytes from skeletal and soft tissue sources,with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte.CD146+CD31~CD45_pericytes were derived by fluorescence-activated cell sorting from human periosteum,adipose,or dermal tissue.Periosteal CD146+CD31—CD45 cells retained canonical features of pericytes/MSC.Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo,while soft tissue pericytes did not readily.Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts,and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes.Conversely,enrichment of CXCR4+pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell.In sum,human skeletal and soft tissue pericytes differ in their basal abilities to form bone.Diversity exists in soft tissue pericytes,however,and CXCR4+pericytes represent an osteoblastogenic,non-adipocytic cell precursor.Indeed,enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering. 展开更多
关键词 CD146 CXCR4 PERICYTE
下载PDF
Effects of DDPH on HECCM-induced Proliferation and Immunophenotypes of the Pulmonary Vascular Pericytes 被引量:1
12
作者 袁永辉 车东媛 熊密 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2001年第3期184-187,共4页
In order to study the effects of 1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino) propane hydrochloride (DDPH) on proliferation and immunophenotypes of newborn rat pulmonary vascular pericytes induced by hypo... In order to study the effects of 1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino) propane hydrochloride (DDPH) on proliferation and immunophenotypes of newborn rat pulmonary vascular pericytes induced by hypoxic endothelial cell conditioned medium (HECCM) from porcine pulmonary arteries, the cultured pericytes were divided into 4 groups according to the endothelial cell conditioned medium (ECCM) used: normoxic ECCM (NECCM) group, NECCM+DDPH group, HECCM group and HECCM+DDPH group. Cell culture, immunocytochemical staining, image analysis and flow cytometric method were used to investigate the effects of HECCM and DDPH on the expression of α-smooth muscle actin (α-SM-Actin) antigen, CD34 antigen, S-100 antigen and proliferating cell nuclear antigen (PCNA) and cell cycle in pericytes. The results showed that the α-SM-Actin antigen in the pericytes in HECCM group was stronger positively expressed than in the other three groups, but CD34 antigen and S-100 antigen were negatively expressed. The expression of α-SM-Actin antigen, CD34 antigen and S-100 antigen was positive in the groups of NECCM, NECCM+DDPH and HECCM+DDPH; The expression of α-SM-Actin and PCNA in HECCM group was 1.32 times (P<0.01) and 1.24 times (P<0.05) that in NECCM group, 1.30 times (P<0.01) and 1.21 times (P<0.05) that in HECCM+DDPH group, respectively. The percentage of the cells in the GO-G1 phase in the HECCM group was lower by 11.7 % and 9.1 %, in S phase higher by 5.6 % and 4.2 %, in G2-M phase higher by 6.1 % and 4.9 % than in the groups of NECCM,HECCM+DDPH, respectively. The inhibitory rate of DDPH on the increased α-SM-Actin and PCNA syntheses in pericytes induced by HECCM were 23.4 % and 17.1 % respectively. The inhibitory rate on the increased pericytes from GO-G1 phase to S phase was 8.3 %. These results suggest that DDPH can directly inhibit pericytes from proliferation and immunophenotypical transformation of smooth muscle-like cells induced by HECCM. 展开更多
关键词 DDPH PERICYTE immunophenotypes HECCM hypertension pulmonary
下载PDF
Multifaceted roles of pericytesinterorgan interactions 被引量:1
13
作者 Zhitong Zheng Michael Chopp Jieli Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第5期982-983,共2页
Microvascular dysfunction has been implicated in many diseases such as stroke and diabetes.In addition to the microvascular endothelial cell(EC),the pericyte,a perivascular cell that adheres to the abluminal side of t... Microvascular dysfunction has been implicated in many diseases such as stroke and diabetes.In addition to the microvascular endothelial cell(EC),the pericyte,a perivascular cell that adheres to the abluminal side of the EC may also be important to ensure proper microvascular function.As a prominent perivascular cell,the pericyte has garnered increasing attention for its multiple functional aspects,especially the pericyte of central nervous system(Yemisci et al.,2009;Armulik et al.,2010;Gaceb et al.,2018). 展开更多
关键词 al. PERICYTE function.
下载PDF
Effect of C-myc Antisense Oligodeoxynucleotides on Hypoxia-induced Proliferation of Pulmonary Vascular Pericytes 被引量:1
14
作者 王林 熊密 +1 位作者 车东媛 郑晓静 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2000年第3期194-196,共3页
To study the effect of c myc antisense oligodeoxynucleotides (ODNs) on proliferation of pulmonary vascular pericytes (PC) induced by hypoxia, cell culture, dot hybridization using probe of digoxigenin 11 dUTP labe... To study the effect of c myc antisense oligodeoxynucleotides (ODNs) on proliferation of pulmonary vascular pericytes (PC) induced by hypoxia, cell culture, dot hybridization using probe of digoxigenin 11 dUTP labeled cDNA, 3H thymidine incorporation, immunocytochemical technique and image analysis methods were used to observe the effect of c myc antisense ODNs on expression of c myc gene and proliferating cell nuclear antigen (PCNA), and 3H thymidine incorporation of PC induced by hypoxia. The results showed that hypoxia could significantly enhance the expression of c myc and PCNA ( P <0.01), and elevate 3H thymidine incorporation of PC ( P <0.01), but antisense ODNs could significantly inhibit the expression of c myc and PCNA ( P <0.05), and 3H thymidine incorporation of PC ( P <0.01). It was suggested that hypoxia could promote the proliferation of PC by up regulating the expression of c myc gene, but c myc antisense ODNs could inhibit hypoxia induced proliferation of PC by downregulating the expression of c myc gene. 展开更多
关键词 antisense oligodeoxynucleotides HYPOXIA PERICYTE ONCOGENE
下载PDF
Role of the Pericytes of Intra-acinar Pulmonary Artery in the Structural Remodeling of Pulmonary Vessels 被引量:1
15
作者 吴永平 车东媛 +1 位作者 张婉蓉 李文英 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 1995年第1期16-18,共3页
Whether or not the pericytes exist in the intra-acinar pulmonary arteries and their normal structure and morphological changes during development of the structural remodeling of pulmonary vessels were observed using a... Whether or not the pericytes exist in the intra-acinar pulmonary arteries and their normal structure and morphological changes during development of the structural remodeling of pulmonary vessels were observed using a pulmonary hypertension model in rats induced by monocrotaline injection.The results showed that the pericytes in the peripheral pulmonary vessels proliferated and transformed into smooth muscle cells during development of pulmonary hypertension,and at the same time,the pericytes could synthesize and secrete extracellular matrix including collagen,suggesting that the pericytes play an important role in the development of pulmonary hypertension and structural remodeling of the pulmonary vessels. 展开更多
关键词 hypertension pulmonale PERICYTE artery pulmonale
下载PDF
AB042.Pericytes on microvessels lead to vascular dysfunction during retinal ischemia
16
作者 Deborah Villafranca-Baughman Luis Alarcón-Martínez Adriana Di Polo 《Annals of Eye Science》 2018年第1期448-448,共1页
Background:Pericytes are contractile cells that wrap along the walls of capillaries.In the brain,pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic d... Background:Pericytes are contractile cells that wrap along the walls of capillaries.In the brain,pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand.During ischemia,it has been suggested that pericytes may constrict capillaries,and that pericytes remain constricted after reperfusion thus resulting in impaired blood flow.Methods:Here,we used a mouse model of retinal ischemia based on ligation of the central retinal artery to characterize the role of pericytes on capillary constriction.Ischemia was induced in transgenic mice carrying the NG2 promoter driving red fluorescent protein expression to selectively visualize pericytes(line NG2:DsRed).Changes in retinal capillary diameter at 1 hr after ischemia were measured ex vivo in whole-mounted retinas from ischemic and control eyes(n=4-6/group)using a stereological approach.Vessels and pericytes were three-dimensionally reconstructed using IMARIS(Bitplane).Furthermore,we used a novel and minimally invasive two-photon microscopy approach that allowed live imaging of microvasculature changes in the retina.Results:Our data show a generalized reduction in capillary diameter in ischemic retinas relative to sham-operated controls in all vascular plexus(ischemia:4.7±0.2μm,control:5.2±0.2µm,student’s t-test,P<0.001).Analysis of the number of capillary constrictions at pericyte locations,visualized in NG2:DsRed mice,demonstrated a substantial increase in ischemic retinas relative to the physiological capillary diameter reductions observed in controls(ischemia:1,038±277 constrictions at pericyte locations,control:60±36 constrictions at pericyte locations,student’s t-test,P<0.01).Live imaging using two-photon microscopy confirmed robust capillary constriction at the level of pericytes on retinal capillaries during ischemia(n=6-8/group).Conclusions:Collectively,our data demonstrate that ischemia promotes rapid pericyte constriction on retinal capillaries causing major microvascular dysfunction in this tissue.To identify the molecular mechanisms underlying the pathological response of pericytes during ischemia,we are currently carrying out experiments in mice and zebrafish to modulate signaling pathways involved in calcium dynamics leading to contractility in these cells. 展开更多
关键词 ISCHEMIA PERICYTE blood flow regulation in vivo two-photon microscopy
下载PDF
Advances in the differentiation of pluripotent stem cells into vascular cells
17
作者 Yi-Chang Jiao Ying-Xin Wang +4 位作者 Wen-Zhu Liu Jing-Wen Xu Yu-Ying Zhao Chuan-Zhu Yan Fu-Chen Liu 《World Journal of Stem Cells》 SCIE 2024年第2期137-150,共14页
Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve... Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed. 展开更多
关键词 Induced pluripotent stem cell Blood vessels Vascular organoids Endothelial cells Smooth muscle cells pericytes Tissue engineering vascular graft
下载PDF
Impaired pericyte-Müller glia interaction via PDGFRβ suppression aggravates photoreceptor loss in a rodent model of light-induced retinal injury
18
作者 Wei Xu Li-Jin Cui +3 位作者 Xiao-Ying Yang Xiao-Yuan Cui Jian Guo Guo-Xing Xu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第10期1800-1808,共9页
AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in r... AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in retinal pericytes on photoreceptor loss and Müller glial response.METHODS:Sprague-Dawley rats were exposed to intense light to induce retinal injury.Neutralizing antibody against PDGFRβwere deployed to block the signaling pathway in retinal pericytes through intravitreal injection.Retinal histology and Müller glial reaction were assessed following light injury.In vitro,normal and PDGFRβ-blocked retinal pericytes were cocultured with Müller cell line(rMC-1)to examine morphological and protein expression changes upon supplementation with light-injured supernatants of homogenized retinas(SHRs).RESULTS:PDGFRβblockage 24h prior to intense light exposure resulted in a significant exacerbation of photoreceptor loss.The upregulation of GFAP and p-STAT3,observed after intense light exposure,was significantly inhibited in the PDGFRβblockage group.Fur ther upregulation of cytokines monocyte chemoattractant protein 1(MCP-1)and interleukin-1β(IL-1β)was also observed following PDGFRβinhibition.In the in vitro coculture system,the addition of light-injured SHRs induced pericyte deformation and upregulation of proliferating cell nuclear antigen(PCNA)expression,while Müller cells exhibited neuron-like morphology and expressed Nestin.However,PDGFRβblockage in retinal pericytes abolished these cellular responses to light-induced damage,consistent with the in vivo PDGFRβblockage findings.CONCLUSION:Pericyte-Müller glia interaction plays a potential role in the endogenous repair process of retinal injury.Impairment of this interaction exacerbates photoreceptor degeneration in light-induced retinal injury. 展开更多
关键词 PERICYTE Müller glia light-induced retinal injury platelet-derived growth factor receptorβ signal pathway
下载PDF
Pericytes are correlated with the permeability of rat corneal neovascular vessels induced by alkali burn 被引量:9
19
作者 ZHAO Wei JIANG Ai-hua +3 位作者 LI Chao-yang YANG Wen-zhao XU Chuan-chao LIU Zu-guo 《Chinese Medical Journal》 SCIE CAS CSCD 2007年第4期274-279,共6页
Background Comeal neovascular leakage can lead to edema and secondary scarring. Previous studies have shown that pericytes play a key role in maturation of angiogenesis. The present studies investigate the relationshi... Background Comeal neovascular leakage can lead to edema and secondary scarring. Previous studies have shown that pericytes play a key role in maturation of angiogenesis. The present studies investigate the relationship between vascular permeability and pericyte coverage of endothelial cells in rat corneal neovascular induced by alkali bums. Methods Corneal neovascular vessels induced by alkali bums was performed in Sprague-Dawley rats. Corneas were excised on 1,2, 3, 5, 7 and 10 days after cauterization. The vascular permeability rate was measured by the Evans blue method. The microvessel pericyte coverage index (MPI) was applied to quantify the pericyte coverage through double immunofluorescent staining of frozen sections of corneas with CD31 as the endothelial and α-smooth muscle actin (α-SMA) as the pericyte markers. The correlation between permeability rate and MPI was analyzed. Pericyte coverage was confirmed ultrastructually using transmission electron microscopy. Results The vascular permeability rate was (1.14±0.17), (0.24±0.08), (0.29±0.16), (0.14±0.10), (0.09±0.06) and (0.05±0.04)μg· ml^-1 · mm^-2respectively on 1, 2, 3, 5, 7 and 10 days after cauterization. The MPI was 0, 16.07%, 11.95%, 43.84%, 73.97% and 86.21% respectively at the above mentioned time points. The correlation coefficient between MPI and the permeability rate was -0.943 (P=-0.005). Conclusions Pericyte recruitment was significantly correlated with the permeability of comeal neovascularization induced by alkali bums in rats. Therapeutic strategies aiming at anti-leakage should be most effective if they promote pericytes proliferation in the course of corneal neovascularization. 展开更多
关键词 CORNEA PERICYTE PERMEABILITY angiogenesis
原文传递
Microvascular protective role of pericytes in melatonin-treated spinal cord injury in the C57BL/6 mice 被引量:9
20
作者 Jing Yingli Wu Qingbin Yuan Xiaochen Li Bingwei Liu Mingming Zhang Xiaoyan Liu Shuying Li Hongwei Xiu Ruijuan 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第15期2808-2813,共6页
Background Pericytes,located on microvessels,help to maintain vascular stability and blood-brain barrier integrity.The influence of pericytes on microvessels after spinal cord injury (SCI) is less clear.Therefore,th... Background Pericytes,located on microvessels,help to maintain vascular stability and blood-brain barrier integrity.The influence of pericytes on microvessels after spinal cord injury (SCI) is less clear.Therefore,the aim of this study was to investigate whether pericytes took a protective effect on microvessels in melatonin-treated SCI.Methods C57BL/6 mice were randomly divided into three groups:sham group,SCI group,and melatonin group (n=27per group).Functional recovery was evaluated using the Basso Mouse Scale.Motor neurons were observed using hematoxylin and eosin staining.Pericyte coverage was analyzed using immunofluorescence.Permeability of blood-spinal cord barrier (BSCB) was assessed by administration of Evan's Blue.Protein levels of occludin,aquaporin-4 (AQP4),angiopoietin-1 (Ang1),intercellular cell adhesion molecule-1 (ICAM-1),Bcl-2,and Bax were determined using Western blotting.Mimicking the pathological conditions of SCI,melatonin-treated primary pericytes were subjected to oxygenglucose deprivation/reperfusion (OGD/R).Secretion of Ang1 was analyzed using an enzyme-linked immunosorbent assay,and the expression of ICAM-1 was detected by immunofluorescence.Results Melatonin treatment improved locomotor functional outcome and rescued motor neurons.Pericyte coverage was significantly reduced after SCI; melatonin treatment alleviated the loss of pericyte coverage and rescued perfused microvessels 7 days after injury.The permeability of BSCB and loss of occludin were attenuated,and edema formation and upregulation of AQP4 were inhibited,after melatonin treatment.The expression of Ang1 and Bcl-2 was improved,while the expression of ICAM-1 and Bax was inhibited,in melatonin-treated SCl mice.Furthermore,the secretion of Ang1 was increased and the expression of ICAM-1 was inhibited in melatonin-treated pericytes after OGD/R.Conclusions Melatonin ameliorated the loss of blood vessels and disruption of BSCB to exert a protective effect on SCI,which might be mediated by increased pericyte coverage.The upregulation of Ang1 in pericytes could inhibit inflammation and apoptosis to protect the microvessels. 展开更多
关键词 PERICYTE spinal cord injury microvessel blood-spinal cord barrier ANGIOPOIETIN-1 MELATONIN
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部