The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data ro...The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.展开更多
The current geographic routing protocols arise data congestion if a multi-flow bypasses a hole simultaneously and excessive energy consumption of hole boundary nodes because these protocols tend to route data packets ...The current geographic routing protocols arise data congestion if a multi-flow bypasses a hole simultaneously and excessive energy consumption of hole boundary nodes because these protocols tend to route data packets along the boundaries of void areas (holes) by perimeter routing scheme.This scheme possibly enlarges the holes phenomenon (called hole diffusion problem) and shortens the life span of the network. A novel geographical routing algorithm based on a potential field approach (PFA) is proposed to deal with multiple holes scenario and restrict data to forward near boundary of a hole. That is, data packets are attracted to its sink and are repulsed away from the hole (s). Simulation results show that PFA is superior to other protocols in terms of packet delivery ratio, network lifetime.展开更多
基金Shanghai Summit Discipline in Design,ChinaSpecial Project Funding for the Shanghai Municipal Commission of Economy and Information Civil-Military Inosculation Project,China(No.JMRH-2018-1042)。
文摘The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.
文摘The current geographic routing protocols arise data congestion if a multi-flow bypasses a hole simultaneously and excessive energy consumption of hole boundary nodes because these protocols tend to route data packets along the boundaries of void areas (holes) by perimeter routing scheme.This scheme possibly enlarges the holes phenomenon (called hole diffusion problem) and shortens the life span of the network. A novel geographical routing algorithm based on a potential field approach (PFA) is proposed to deal with multiple holes scenario and restrict data to forward near boundary of a hole. That is, data packets are attracted to its sink and are repulsed away from the hole (s). Simulation results show that PFA is superior to other protocols in terms of packet delivery ratio, network lifetime.