An rCHO cell line expressing recombinant human prourokinase (pro-UK) at the level of 5μg/ 10^6cells/d was cultivated on Cytopore cellulose porous microcarriers in a 7.5L Biostat CT stirred tank reactor. A periodic ...An rCHO cell line expressing recombinant human prourokinase (pro-UK) at the level of 5μg/ 10^6cells/d was cultivated on Cytopore cellulose porous microcarriers in a 7.5L Biostat CT stirred tank reactor. A periodic pressure oscillation of 0.04 MPa and 0.04 Hz was adopted to introduce a physical stimulus on the rCHO cells and to improve mass transfer characteristic between cells and medium in the process of porous microcarrier CHO cell culture. Compared to constant pressure culture, the oscillation culture didn't influence specific cell growth rate significantly, but could enhance the pro-UK specific production by 10% - 40%, and reduce production of lactate by 10% - 30%. In the perfusion culture of recombinant CHO cell with serum-free medium for 67 days, cell density could reach 2.64×10^7/ml, the maximal prourokinase concentration in harvested supernatant was about 118mg/L, a total of 21.1 grams of prourokinase was produced in 313 liters of supernatant. In conclusion, the perfusion cell culture with periodic pressure oscillation can enhance the production of recombinant protein and increase the reactor specific productivity.展开更多
The influence of periodic pressure with low and high frequencies on microstructure and dendritic sidebranching was studied by using 3-D phase field method. In both low and high frequency cases, the variation trend of ...The influence of periodic pressure with low and high frequencies on microstructure and dendritic sidebranching was studied by using 3-D phase field method. In both low and high frequency cases, the variation trend of SDAS (secondary dendritic arm spacing) with increasing pressure frequency is opposite to that of sidebranching frequency, while the variation trend of the average length of secondary arms is consistent with that of sidebranching frequency. The high sidebranching frequency indicates that more secondary arms share the whole driving force of dendrite growth, resulting in lower driving force for each one and leading to less developed secondary arms. The smallest SDAS is obtained when perturbed by the periodic pressure with the frequency of 0.157/τ0 (τ0 is the physical unit of time in the dimensionless phase field model) and 2.200/τ0 in low and high frequency cases, respectively. Comparisons of dendritic morphology and secondary arms are made between the low and high frequency cases. Firstly, in the low frequency case, secondary arms are luxuriant especially when pressure frequency is low, with many high-order side branches stretching out. Secondly, the average length of secondary arms in primary dendrite is longer in the low frequency case than that without pressure, and much longer than that in the high frequency case. Thirdly, the dendrite tip without side branches in the high frequency case is much longer than that in the low frequency case. All of the differences in dendritic morphology and sidebranching in the two cases can be attributed to the different modulation mechanism. In the low frequency case, periodic pressure determines tip velocity and then modulates sidebranching directly. While in the high frequency case, periodic pressure cannot determine sidebranching directly, but via modulating tiny protuberances in dendrite tip, part of which evolves into side branch. In this case, the tiny protuberances take part of the whole driving force, leading to less developed secondary arms.展开更多
The distinctions of dendritic morphology and sidebranching behavior when solidified under atmosphere pressure,constant pressure which is higher than atmosphere pressure (hereinafter referred to as constant pressure) a...The distinctions of dendritic morphology and sidebranching behavior when solidified under atmosphere pressure,constant pressure which is higher than atmosphere pressure (hereinafter referred to as constant pressure) and periodic pressure were investigated using 3-D phase field method.When growing at atmosphere pressure,side branches (secondary dendritic arms) are irregular.When solidified under constant pressure with a relatively high value,side branches are much more luxuriant,with more developed high-order side branches.When applied with periodic pressure,resonant sidebranching happens,leading to many more regular side branches and the smallest secondary dendritic arm spacing (SDAS) in the three cases.The significant difference in dendritic morphology is associated with tip velocity modulated by total undercooling including pressure and temperature undercooling.In the case of constant pressure,tip velocity increases linearly with total undercooling,and it varies periodically in periodic pressure case.The different variation trend in tip velocity is the reason for the distinct dendrite growth behavior in different cases.Unlike the phenomenon in constant pressure case where the dendrite grows faster with higher pressure,the dendrite grows slower under periodic pressure with higher amplitude,resulting in less developed primary dendrite and side branches.This is influenced by tip remelting due to low undercooling or even negative undercooling.It is revealed that the accelerated velocity of tip remelting increases with the decline of undercooling.The greater the amplitude of periodic pressure,the faster the tip remelting velocity during one period.This is the reason why the average tip velocity decreases with the rise of amplitude of periodic pressure.展开更多
In order to determine the influence of shearer's cutting and neighboring shields' advance on the support resistance variation, leg pressure data of all 235 shields in the panel LW61 of Cumberland coal mine wer...In order to determine the influence of shearer's cutting and neighboring shields' advance on the support resistance variation, leg pressure data of all 235 shields in the panel LW61 of Cumberland coal mine were analyzed. The results show that the relationship between the leg pressure increment and the distance from shield to front drum of shearer is a quadratic function and that the higher leg pressure increment before shield advance tends to be related to adverse roof conditions. In addition, the three proposed leg pressure increment-related parameters and the three traditional parameters(time-weighted average pressure, setting pressure, and final pressure) of approximately 32000 shield supporting cycles were calculated by a self-developed software package to analyze the correlation between them. The results show that there is a powerful connection between them, and that the three proposed leg pressure increment-related parameters could be used as the indexes to evaluate the interaction between shields and the roof, and to identify the periodic weighting.展开更多
The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time h...The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.展开更多
The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on th...The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on the key assumptions of the shallowness and the small deformation, a perturbation analysis is conducted up to the second order to find the mean Eulerian velocity in an Eulerian coordinate system. The numerical iteration method is adopted to solve these non-linear equations of the leading order. From the numerical results, both the first-order flow fields and the second-order mass transport velocities are examined. The verifications are made by comparing the numerical results with experimental results in the literature, and a good agreement is confirmed.展开更多
文摘An rCHO cell line expressing recombinant human prourokinase (pro-UK) at the level of 5μg/ 10^6cells/d was cultivated on Cytopore cellulose porous microcarriers in a 7.5L Biostat CT stirred tank reactor. A periodic pressure oscillation of 0.04 MPa and 0.04 Hz was adopted to introduce a physical stimulus on the rCHO cells and to improve mass transfer characteristic between cells and medium in the process of porous microcarrier CHO cell culture. Compared to constant pressure culture, the oscillation culture didn't influence specific cell growth rate significantly, but could enhance the pro-UK specific production by 10% - 40%, and reduce production of lactate by 10% - 30%. In the perfusion culture of recombinant CHO cell with serum-free medium for 67 days, cell density could reach 2.64×10^7/ml, the maximal prourokinase concentration in harvested supernatant was about 118mg/L, a total of 21.1 grams of prourokinase was produced in 313 liters of supernatant. In conclusion, the perfusion cell culture with periodic pressure oscillation can enhance the production of recombinant protein and increase the reactor specific productivity.
基金This wurk was supputed by lhe Nativual Higl Teeltwlugy Research and Development Program of China(Grant No.2018YF E0204300)Institute Guo Qiang,Tsinghua University(Grant No.2019GQG1010).
文摘The influence of periodic pressure with low and high frequencies on microstructure and dendritic sidebranching was studied by using 3-D phase field method. In both low and high frequency cases, the variation trend of SDAS (secondary dendritic arm spacing) with increasing pressure frequency is opposite to that of sidebranching frequency, while the variation trend of the average length of secondary arms is consistent with that of sidebranching frequency. The high sidebranching frequency indicates that more secondary arms share the whole driving force of dendrite growth, resulting in lower driving force for each one and leading to less developed secondary arms. The smallest SDAS is obtained when perturbed by the periodic pressure with the frequency of 0.157/τ0 (τ0 is the physical unit of time in the dimensionless phase field model) and 2.200/τ0 in low and high frequency cases, respectively. Comparisons of dendritic morphology and secondary arms are made between the low and high frequency cases. Firstly, in the low frequency case, secondary arms are luxuriant especially when pressure frequency is low, with many high-order side branches stretching out. Secondly, the average length of secondary arms in primary dendrite is longer in the low frequency case than that without pressure, and much longer than that in the high frequency case. Thirdly, the dendrite tip without side branches in the high frequency case is much longer than that in the low frequency case. All of the differences in dendritic morphology and sidebranching in the two cases can be attributed to the different modulation mechanism. In the low frequency case, periodic pressure determines tip velocity and then modulates sidebranching directly. While in the high frequency case, periodic pressure cannot determine sidebranching directly, but via modulating tiny protuberances in dendrite tip, part of which evolves into side branch. In this case, the tiny protuberances take part of the whole driving force, leading to less developed secondary arms.
基金supported by the National High Technology Research and Development Program of China(Grant No.2018YFE0204300)Institute Guo Qiang,Tsinghua University(Grant No.2019GQG1010)。
文摘The distinctions of dendritic morphology and sidebranching behavior when solidified under atmosphere pressure,constant pressure which is higher than atmosphere pressure (hereinafter referred to as constant pressure) and periodic pressure were investigated using 3-D phase field method.When growing at atmosphere pressure,side branches (secondary dendritic arms) are irregular.When solidified under constant pressure with a relatively high value,side branches are much more luxuriant,with more developed high-order side branches.When applied with periodic pressure,resonant sidebranching happens,leading to many more regular side branches and the smallest secondary dendritic arm spacing (SDAS) in the three cases.The significant difference in dendritic morphology is associated with tip velocity modulated by total undercooling including pressure and temperature undercooling.In the case of constant pressure,tip velocity increases linearly with total undercooling,and it varies periodically in periodic pressure case.The different variation trend in tip velocity is the reason for the distinct dendrite growth behavior in different cases.Unlike the phenomenon in constant pressure case where the dendrite grows faster with higher pressure,the dendrite grows slower under periodic pressure with higher amplitude,resulting in less developed primary dendrite and side branches.This is influenced by tip remelting due to low undercooling or even negative undercooling.It is revealed that the accelerated velocity of tip remelting increases with the decline of undercooling.The greater the amplitude of periodic pressure,the faster the tip remelting velocity during one period.This is the reason why the average tip velocity decreases with the rise of amplitude of periodic pressure.
基金provided by the National High Technology Research and Development Program of China(No.2012AA062100)the Program for New Century Excellent Talents in University of China(No.NCET-10-0770)
文摘In order to determine the influence of shearer's cutting and neighboring shields' advance on the support resistance variation, leg pressure data of all 235 shields in the panel LW61 of Cumberland coal mine were analyzed. The results show that the relationship between the leg pressure increment and the distance from shield to front drum of shearer is a quadratic function and that the higher leg pressure increment before shield advance tends to be related to adverse roof conditions. In addition, the three proposed leg pressure increment-related parameters and the three traditional parameters(time-weighted average pressure, setting pressure, and final pressure) of approximately 32000 shield supporting cycles were calculated by a self-developed software package to analyze the correlation between them. The results show that there is a powerful connection between them, and that the three proposed leg pressure increment-related parameters could be used as the indexes to evaluate the interaction between shields and the roof, and to identify the periodic weighting.
基金Project supported by the China Scholarship(Grant No.201406715005)Qing Lan Project,the Natural National Science Foundation of China(Grant Nos.11172090,11272113)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012809)
文摘The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.
基金supported by the National Natural Science Foun-dation of China(Grant No.40376028)the Application and Basic research of Tianjin(Grant No.11JCYBJC03200)
文摘The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on the key assumptions of the shallowness and the small deformation, a perturbation analysis is conducted up to the second order to find the mean Eulerian velocity in an Eulerian coordinate system. The numerical iteration method is adopted to solve these non-linear equations of the leading order. From the numerical results, both the first-order flow fields and the second-order mass transport velocities are examined. The verifications are made by comparing the numerical results with experimental results in the literature, and a good agreement is confirmed.