In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter...In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.展开更多
As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmosp...As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on tem- poral behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is devel- oped to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2... ) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to an- other, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteris- tics of the discharge system are studied for further understanding of the radial structure.展开更多
It is revealed in frictional experiments on medium-scale samples that period doubling bifurcation of stress drop for stick-slip occurs due to macroscopic heterogeneity of the sliding surface under conditions for typic...It is revealed in frictional experiments on medium-scale samples that period doubling bifurcation of stress drop for stick-slip occurs due to macroscopic heterogeneity of the sliding surface under conditions for typical stick-slip.The observed data show that the period doubling bifurcation of stress drop results from the alternate occurrence of strain release along the whole fault and along part of fault.This implies that complicated nonlinear behavior corresponds to clear physical implication in some cases.展开更多
This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equiva...This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.展开更多
The bifurcation of a periodic solution for a delay differential equation related to optical bistability has been discussed analytically.Using the theory of retarded functional differential equations,we have proved tha...The bifurcation of a periodic solution for a delay differential equation related to optical bistability has been discussed analytically.Using the theory of retarded functional differential equations,we have proved that it follows precisely the period-doubling route.展开更多
Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing sys...Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal dir...In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal direction.Using conformal mappings,one can change the free boundary problem into a fixed boundary problem for some unknown functions with the boundary condition.By virtue of the Hilbert transform,the problem is equivalent to a quasilinear pseudodifferential equation for an almost periodic function of one variable.The bifurcation theory ensures that we can obtain an existence result.Our existence result generalizes and covers the recent result in[15].Moreover,our result implies a non-uniqueness result at the same bifurcation point.展开更多
The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cel...The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cells and the circulating neutrophil phase is set forth after delay feedback control of the state variable of stem cells. Hopf bifurcation is discussed with varying free parameters and time delays. Based on the center manifold theory, the normal form near the critical point is computed and the stability of bifurcating periodical solution is rigorously discussed. With the aids of the artificial tool on-hand which implies how much tedious work doing by DDE-Biftool software, the bifurcating periodic solution after Hopf point is continued by varying time delay.展开更多
The delay feedback control brings forth interesting periodical oscillation bifurcation phenomena which reflect in Mackey-Glass white blood cell model. Hopf bifurcation is analyzed and the transversal condition of Hopf...The delay feedback control brings forth interesting periodical oscillation bifurcation phenomena which reflect in Mackey-Glass white blood cell model. Hopf bifurcation is analyzed and the transversal condition of Hopf bifurcation is given. Both the period-doubling bifurcation and saddle-node bifurcation of periodical solutions are computed since the observed floquet multiplier overpass the unit circle by DDE-Biftool software in Matlab. The continuation of saddle-node bifurcation line or period-doubling curve is carried out as varying free parameters and time delays. Two different transition modes of saddle-node bifurcation are discovered which is verified by numerical simulation work with aids of DDE-Biftool.展开更多
The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is stu...The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.展开更多
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates...The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.展开更多
To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with differential Chay model, this paper fits a discontinuous map of a slow control va...To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with differential Chay model, this paper fits a discontinuous map of a slow control variable of Chay model based on simulation results. The procedure of period adding bifurcation scenario from period k to period k + 1 bursting (k = 1, 2, 3, 4) involved in the period-adding cascades and the stochastic effect of noise near each bifurcation point is also reproduced in the discontinuous map. Moreover, dynamics of the border-collision bifurcation is identified in the discontinuous map, which is employed to understand the experimentally observed period increment sequence. The simple discontinuous map is of practical importance in modeling of collective behaviours of neural populations like synchronization in large neural circuits.展开更多
In this paper, external bifurcations of heterodimensional cycles connecting three saddle points with one orbit flip, in the shape of “∞”, are studied in three-dimensional vector field. We construct a poincaré ...In this paper, external bifurcations of heterodimensional cycles connecting three saddle points with one orbit flip, in the shape of “∞”, are studied in three-dimensional vector field. We construct a poincaré return map between returning points in a transverse section by establishing a locally active coordinate system in the tubular neighborhood of unperturbed double heterodimensional cycles, through which the bifurcation equations are obtained under different conditions. Near the double heterodimensional cycles, the authors prove the preservation of “∞”-shape double heterodimensional cycles and the existence of the second and third shape heterodimensional cycle and a large 1-heteroclinic cycle connecting with <em>P</em><sub>1</sub> and <em>P</em><sub>3</sub>. The coexistence of a 1-fold large 1-heteroclinic cycle and the “∞”-shape double heterodimensional cycles and the coexistence conditions are also given in the parameter space.展开更多
Consider a four-dimensional system having a two-dimensional invariant surface. By analyzing the solutions of bifurcation equations, this paper studied the bifurcation phenomena of a k multiple closed orbit in the inva...Consider a four-dimensional system having a two-dimensional invariant surface. By analyzing the solutions of bifurcation equations, this paper studied the bifurcation phenomena of a k multiple closed orbit in the invariant surface. Sufficient conditions for the existence of periodic orbits generated by the k multiple closed orbit were given.展开更多
This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifur...This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifurcation sequence occurs at the pos- itive equilibrium as the delay passes through a sequence of critical values. The explicit algorithms for determining the Hopf bifurcation direction and the stability of the bifur- cating periodic solutions are derived with the normal form theory and the center manifold theory. The global existence of periodic solutions is also established with the method of Wu (Wu, J. H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society 350(12), 4799-4838 (1998)).展开更多
The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied res...The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincar6 map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.展开更多
In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The co...In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The conditions of existence for flip bifurcation are derived by using the centre manifold theorem and bifurcation theorem. The bifurcation analysis shows that chaotic solutions appear via a cascade of period-doubling in some interval of parameters. Moreover, the periodic solutions, the bifurcation diagram, and the chaotic attractor, which show their consistence with the theoretical analyses, are given in an example.展开更多
Concerns double homoclinic loops with orbit flips and two resonant eigenvalues in a four-dimensional system. We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibr...Concerns double homoclinic loops with orbit flips and two resonant eigenvalues in a four-dimensional system. We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibrium, and the solution of a linear variational system to construct a regular map in some neighborhood of the double homoclinic loops, then compose them to get the important Poincaré map. A simple calculation gives explicitly an expression of the associated successor function. By a delicate analYSiS of the bifurcation equation, we obtain the condition that the original double homoclinic loops are kept, and prove the existence and the existence regions of the large 1-homoclinic orbit bifurcation surface, 2-fold large 1-periodic orbit bifurcation surface, large 2-homoclinic orbit bifurcation surface and their approximate expressions. We also locate the large periodic orbits and large homoclinic orbits and their number.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
基金Project supported by the Major Program of the National Natural Science Foundation of China, China (Grant No 10332030), the National Natural Science Foundation of China (Grant No 10472091), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655).
文摘In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.
基金supported by National Natural Science Foundation of China(No.11275034)Liaoning Province Natural Science Foundation of China(No.201200615)
文摘As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on tem- poral behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is devel- oped to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2... ) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to an- other, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteris- tics of the discharge system are studied for further understanding of the radial structure.
文摘It is revealed in frictional experiments on medium-scale samples that period doubling bifurcation of stress drop for stick-slip occurs due to macroscopic heterogeneity of the sliding surface under conditions for typical stick-slip.The observed data show that the period doubling bifurcation of stress drop results from the alternate occurrence of strain release along the whole fault and along part of fault.This implies that complicated nonlinear behavior corresponds to clear physical implication in some cases.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.
文摘The bifurcation of a periodic solution for a delay differential equation related to optical bistability has been discussed analytically.Using the theory of retarded functional differential equations,we have proved that it follows precisely the period-doubling route.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10472091and10332030)
文摘Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金partially the National Key R&D Program of China(2021YFA1002100)the NSFC(12171493,11701586)+2 种基金the FDCT(0091/2018/A3)the Guangdong Special Support Program(8-2015)the Key Project of NSF of Guangdong Province(2021A1515010296)。
文摘In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal direction.Using conformal mappings,one can change the free boundary problem into a fixed boundary problem for some unknown functions with the boundary condition.By virtue of the Hilbert transform,the problem is equivalent to a quasilinear pseudodifferential equation for an almost periodic function of one variable.The bifurcation theory ensures that we can obtain an existence result.Our existence result generalizes and covers the recent result in[15].Moreover,our result implies a non-uniqueness result at the same bifurcation point.
文摘The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cells and the circulating neutrophil phase is set forth after delay feedback control of the state variable of stem cells. Hopf bifurcation is discussed with varying free parameters and time delays. Based on the center manifold theory, the normal form near the critical point is computed and the stability of bifurcating periodical solution is rigorously discussed. With the aids of the artificial tool on-hand which implies how much tedious work doing by DDE-Biftool software, the bifurcating periodic solution after Hopf point is continued by varying time delay.
文摘The delay feedback control brings forth interesting periodical oscillation bifurcation phenomena which reflect in Mackey-Glass white blood cell model. Hopf bifurcation is analyzed and the transversal condition of Hopf bifurcation is given. Both the period-doubling bifurcation and saddle-node bifurcation of periodical solutions are computed since the observed floquet multiplier overpass the unit circle by DDE-Biftool software in Matlab. The continuation of saddle-node bifurcation line or period-doubling curve is carried out as varying free parameters and time delays. Two different transition modes of saddle-node bifurcation are discovered which is verified by numerical simulation work with aids of DDE-Biftool.
文摘The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.
基金Project supported by the National Natural Science Foundation of China(Nos.11402127,11290152 and 11072008)
文摘The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774088,10772101,30770701 and 10875076)the Fundamental Research Funds for the Central Universities(Grant No.GK200902025)
文摘To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with differential Chay model, this paper fits a discontinuous map of a slow control variable of Chay model based on simulation results. The procedure of period adding bifurcation scenario from period k to period k + 1 bursting (k = 1, 2, 3, 4) involved in the period-adding cascades and the stochastic effect of noise near each bifurcation point is also reproduced in the discontinuous map. Moreover, dynamics of the border-collision bifurcation is identified in the discontinuous map, which is employed to understand the experimentally observed period increment sequence. The simple discontinuous map is of practical importance in modeling of collective behaviours of neural populations like synchronization in large neural circuits.
文摘In this paper, external bifurcations of heterodimensional cycles connecting three saddle points with one orbit flip, in the shape of “∞”, are studied in three-dimensional vector field. We construct a poincaré return map between returning points in a transverse section by establishing a locally active coordinate system in the tubular neighborhood of unperturbed double heterodimensional cycles, through which the bifurcation equations are obtained under different conditions. Near the double heterodimensional cycles, the authors prove the preservation of “∞”-shape double heterodimensional cycles and the existence of the second and third shape heterodimensional cycle and a large 1-heteroclinic cycle connecting with <em>P</em><sub>1</sub> and <em>P</em><sub>3</sub>. The coexistence of a 1-fold large 1-heteroclinic cycle and the “∞”-shape double heterodimensional cycles and the coexistence conditions are also given in the parameter space.
文摘Consider a four-dimensional system having a two-dimensional invariant surface. By analyzing the solutions of bifurcation equations, this paper studied the bifurcation phenomena of a k multiple closed orbit in the invariant surface. Sufficient conditions for the existence of periodic orbits generated by the k multiple closed orbit were given.
基金Project supported by the National Natural Science Foundation of China (Nos. 10771215 and10771094)
文摘This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifurcation sequence occurs at the pos- itive equilibrium as the delay passes through a sequence of critical values. The explicit algorithms for determining the Hopf bifurcation direction and the stability of the bifur- cating periodic solutions are derived with the normal form theory and the center manifold theory. The global existence of periodic solutions is also established with the method of Wu (Wu, J. H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society 350(12), 4799-4838 (1998)).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11202180,61273106,and 11171290)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2010292 and BK2010293)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJB510026)the National Training Programs of Innovation and Entrepreneurship for Undergraduates,China(Grant No.201210324009)the Training Programs of Practice and Innovation for Jiangsu College Students,China(Grant No.2012JSSPITP2378)
文摘The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincar6 map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572011, 100461002, and 10661005)the Natural Science Foundation of Guangxi Province, China (Grant Nos 0575092 and 0832244)
文摘In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The conditions of existence for flip bifurcation are derived by using the centre manifold theorem and bifurcation theorem. The bifurcation analysis shows that chaotic solutions appear via a cascade of period-doubling in some interval of parameters. Moreover, the periodic solutions, the bifurcation diagram, and the chaotic attractor, which show their consistence with the theoretical analyses, are given in an example.
基金Project supported by the National Natural Science Foundation of China (No.10371040)
文摘Concerns double homoclinic loops with orbit flips and two resonant eigenvalues in a four-dimensional system. We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibrium, and the solution of a linear variational system to construct a regular map in some neighborhood of the double homoclinic loops, then compose them to get the important Poincaré map. A simple calculation gives explicitly an expression of the associated successor function. By a delicate analYSiS of the bifurcation equation, we obtain the condition that the original double homoclinic loops are kept, and prove the existence and the existence regions of the large 1-homoclinic orbit bifurcation surface, 2-fold large 1-periodic orbit bifurcation surface, large 2-homoclinic orbit bifurcation surface and their approximate expressions. We also locate the large periodic orbits and large homoclinic orbits and their number.