In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter...In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.展开更多
Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing sys...Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.展开更多
This article describes the implementation of a novel method for detection and continuation of bifurcations in non-smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of asso...This article describes the implementation of a novel method for detection and continuation of bifurcations in non-smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of associated phenomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries). The topology of cycles in non-smooth systems is determined by a group of ordered segments and points of different regions and their boundaries. In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns. To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process. The characterization discriminates: a) types of points and segments;b) direction of sliding segments;and c) regions or discontinuity boundaries to which each element belongs. When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topological changes and hence bifurcations and associated phenomena. This comparison has been tested in systems with discontinuities of three types: 1) impact;2) Filippov and 3) first derivative discontinuities. By coding well-known cycles as sequences of elements, an initial comparison database was built. Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segments.展开更多
The delay feedback control brings forth interesting periodical oscillation bifurcation phenomena which reflect in Mackey-Glass white blood cell model. Hopf bifurcation is analyzed and the transversal condition of Hopf...The delay feedback control brings forth interesting periodical oscillation bifurcation phenomena which reflect in Mackey-Glass white blood cell model. Hopf bifurcation is analyzed and the transversal condition of Hopf bifurcation is given. Both the period-doubling bifurcation and saddle-node bifurcation of periodical solutions are computed since the observed floquet multiplier overpass the unit circle by DDE-Biftool software in Matlab. The continuation of saddle-node bifurcation line or period-doubling curve is carried out as varying free parameters and time delays. Two different transition modes of saddle-node bifurcation are discovered which is verified by numerical simulation work with aids of DDE-Biftool.展开更多
The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cel...The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cells and the circulating neutrophil phase is set forth after delay feedback control of the state variable of stem cells. Hopf bifurcation is discussed with varying free parameters and time delays. Based on the center manifold theory, the normal form near the critical point is computed and the stability of bifurcating periodical solution is rigorously discussed. With the aids of the artificial tool on-hand which implies how much tedious work doing by DDE-Biftool software, the bifurcating periodic solution after Hopf point is continued by varying time delay.展开更多
The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential pr...The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.展开更多
Many systems can display a very short, rapid change stage (quasi-discontinuous region) inside a relatively very long and slow change process. A quantitative definition for the 'quasi-discontinuity' in these sy...Many systems can display a very short, rapid change stage (quasi-discontinuous region) inside a relatively very long and slow change process. A quantitative definition for the 'quasi-discontinuity' in these systems has been introduced. With the aid of a simplified model, some extraordinary Feigenbaum constants have been found inside the period-doubling cascades, the relationship between the values of the extraordinary Feigenbaum constants and the quasi-discontinuity of the system has also been reported. The phenomenon has been observed in Pikovsky circuit and Rose-Hindmash model.展开更多
As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmosp...As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on tem- poral behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is devel- oped to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2... ) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to an- other, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteris- tics of the discharge system are studied for further understanding of the radial structure.展开更多
In this paper, the complicated dynamics is studied near a double homoclinic loops with bellows configuration for general systems. For the non-twisted multiple homoclinics, the existence of periodic orbit with the spec...In this paper, the complicated dynamics is studied near a double homoclinic loops with bellows configuration for general systems. For the non-twisted multiple homoclinics, the existence of periodic orbit with the specified route and the existence of shift-invariant curve sequences defined on the cross sections of multiple homoclinics corresponding to any specified one-side infinite sequences are given. In addition, the existence regions are also located.展开更多
In this paper, we examine a discrete-time Host-Parasitoid model which is a non-dimensionalized Nicholson and Bailey model. Phase portraits are drawn for different ranges of parameters and display the complicated dynam...In this paper, we examine a discrete-time Host-Parasitoid model which is a non-dimensionalized Nicholson and Bailey model. Phase portraits are drawn for different ranges of parameters and display the complicated dynamics of this system. We conduct the bifurcation analysis with respect to intrinsic growth rate <em>r</em> and searching efficiency <em>a</em>. Many forms of complex dynamics such as chaos, periodic windows are observed. Transition route to chaos dynamics is established via period-doubling bifurcations. Conditions of occurrence of the period-doubling, Neimark-Sacker and saddle-node bifurcations are analyzed for <em>b≠a</em> where <em>a,b</em> are searching efficiency. We study stable and unstable manifolds for different equilibrium points and coexistence of different attractors for this non-dimensionalize system. Without the parasitoid, the host population follows the dynamics of the Ricker model.展开更多
Based on the bifurcation theory in nonlinear dynamics, this paper analyzes quantitatively period solution dynamic characteristic. In particular, the ones of period-1 and period-2 solutions are deeply studied. From loc...Based on the bifurcation theory in nonlinear dynamics, this paper analyzes quantitatively period solution dynamic characteristic. In particular, the ones of period-1 and period-2 solutions are deeply studied. From locus of Jacobian matrix eigenvalue, we conclude that the bifurcations between period-1 and period-2 solutions are pitchfork bifurcations while the bifurcations between period-2 and period-3 solutions are border collision bifurcations. The double period bifurcation condition is verified from complex plane locus of eigenvalues, furthermore, the necessary condition occurred pitchfork bifurcation is obtained from the cause of border collision bifurcation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
基金Project supported by the Major Program of the National Natural Science Foundation of China, China (Grant No 10332030), the National Natural Science Foundation of China (Grant No 10472091), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655).
文摘In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10472091and10332030)
文摘Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.
文摘This article describes the implementation of a novel method for detection and continuation of bifurcations in non-smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of associated phenomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries). The topology of cycles in non-smooth systems is determined by a group of ordered segments and points of different regions and their boundaries. In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns. To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process. The characterization discriminates: a) types of points and segments;b) direction of sliding segments;and c) regions or discontinuity boundaries to which each element belongs. When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topological changes and hence bifurcations and associated phenomena. This comparison has been tested in systems with discontinuities of three types: 1) impact;2) Filippov and 3) first derivative discontinuities. By coding well-known cycles as sequences of elements, an initial comparison database was built. Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segments.
文摘The delay feedback control brings forth interesting periodical oscillation bifurcation phenomena which reflect in Mackey-Glass white blood cell model. Hopf bifurcation is analyzed and the transversal condition of Hopf bifurcation is given. Both the period-doubling bifurcation and saddle-node bifurcation of periodical solutions are computed since the observed floquet multiplier overpass the unit circle by DDE-Biftool software in Matlab. The continuation of saddle-node bifurcation line or period-doubling curve is carried out as varying free parameters and time delays. Two different transition modes of saddle-node bifurcation are discovered which is verified by numerical simulation work with aids of DDE-Biftool.
文摘The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cells and the circulating neutrophil phase is set forth after delay feedback control of the state variable of stem cells. Hopf bifurcation is discussed with varying free parameters and time delays. Based on the center manifold theory, the normal form near the critical point is computed and the stability of bifurcating periodical solution is rigorously discussed. With the aids of the artificial tool on-hand which implies how much tedious work doing by DDE-Biftool software, the bifurcating periodic solution after Hopf point is continued by varying time delay.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10472091 and 10332030).
文摘The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.
文摘Many systems can display a very short, rapid change stage (quasi-discontinuous region) inside a relatively very long and slow change process. A quantitative definition for the 'quasi-discontinuity' in these systems has been introduced. With the aid of a simplified model, some extraordinary Feigenbaum constants have been found inside the period-doubling cascades, the relationship between the values of the extraordinary Feigenbaum constants and the quasi-discontinuity of the system has also been reported. The phenomenon has been observed in Pikovsky circuit and Rose-Hindmash model.
基金supported by National Natural Science Foundation of China(No.11275034)Liaoning Province Natural Science Foundation of China(No.201200615)
文摘As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on tem- poral behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is devel- oped to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2... ) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to an- other, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteris- tics of the discharge system are studied for further understanding of the radial structure.
基金Supported by Science Research Foundation of the Returned Overseas Chinese Scholar,SEM,the NSF of China(11202192)Zhejiang Province(LY13A010020)and Program for Excellent Young Teachers in HNU(HNUEYT2013)
文摘In this paper, the complicated dynamics is studied near a double homoclinic loops with bellows configuration for general systems. For the non-twisted multiple homoclinics, the existence of periodic orbit with the specified route and the existence of shift-invariant curve sequences defined on the cross sections of multiple homoclinics corresponding to any specified one-side infinite sequences are given. In addition, the existence regions are also located.
文摘In this paper, we examine a discrete-time Host-Parasitoid model which is a non-dimensionalized Nicholson and Bailey model. Phase portraits are drawn for different ranges of parameters and display the complicated dynamics of this system. We conduct the bifurcation analysis with respect to intrinsic growth rate <em>r</em> and searching efficiency <em>a</em>. Many forms of complex dynamics such as chaos, periodic windows are observed. Transition route to chaos dynamics is established via period-doubling bifurcations. Conditions of occurrence of the period-doubling, Neimark-Sacker and saddle-node bifurcations are analyzed for <em>b≠a</em> where <em>a,b</em> are searching efficiency. We study stable and unstable manifolds for different equilibrium points and coexistence of different attractors for this non-dimensionalize system. Without the parasitoid, the host population follows the dynamics of the Ricker model.
基金This work was supported by the National Nature Science Foundation of China under Grant No.60436030
文摘Based on the bifurcation theory in nonlinear dynamics, this paper analyzes quantitatively period solution dynamic characteristic. In particular, the ones of period-1 and period-2 solutions are deeply studied. From locus of Jacobian matrix eigenvalue, we conclude that the bifurcations between period-1 and period-2 solutions are pitchfork bifurcations while the bifurcations between period-2 and period-3 solutions are border collision bifurcations. The double period bifurcation condition is verified from complex plane locus of eigenvalues, furthermore, the necessary condition occurred pitchfork bifurcation is obtained from the cause of border collision bifurcation.