The load-bearing capacity of ductile composite structures comprised of periodic composites is studied by a combined micro/macromechanicai approach. Firstly, on the microscopic level, a representative volume element (...The load-bearing capacity of ductile composite structures comprised of periodic composites is studied by a combined micro/macromechanicai approach. Firstly, on the microscopic level, a representative volume element (RVE) is selected to reflect the microstructures of the composite materials and the constituents are assumed to be elastic perfectly-plastic. Based on the homogenization theory and the static limit theorem, an optimization formulation to directly calculate the macroscopic strength domain of the RVE is obtained. The finite element modeling of the static limit analysis is formulated as a nonlinear mathematical programming and solved by the sequential quadratic programming method, where the temperature parameter method is used to construct the self-stress field. Secondly, Hill's yield criterion is adopted to connect the micromechanicai and macromechanical analyses. And the limit loads of composite structures are worked out on the macroscopic scale. Finally, some examples and comparisons are shown.展开更多
基金supported by the National Natural Science Foundation of China (No.50809003)the National Foundation for Excellent Doctorial Dissertation of China (200025).
文摘The load-bearing capacity of ductile composite structures comprised of periodic composites is studied by a combined micro/macromechanicai approach. Firstly, on the microscopic level, a representative volume element (RVE) is selected to reflect the microstructures of the composite materials and the constituents are assumed to be elastic perfectly-plastic. Based on the homogenization theory and the static limit theorem, an optimization formulation to directly calculate the macroscopic strength domain of the RVE is obtained. The finite element modeling of the static limit analysis is formulated as a nonlinear mathematical programming and solved by the sequential quadratic programming method, where the temperature parameter method is used to construct the self-stress field. Secondly, Hill's yield criterion is adopted to connect the micromechanicai and macromechanical analyses. And the limit loads of composite structures are worked out on the macroscopic scale. Finally, some examples and comparisons are shown.