In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s p...In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s periodic solution theorem. Anexample of application is given at the end.展开更多
A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be appl...A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.展开更多
In this paper, we investigate the existence and the form of subnormal solution for a class of second order periodic linear differential equations, estimate the growth properties of all solutions, and answer the questi...In this paper, we investigate the existence and the form of subnormal solution for a class of second order periodic linear differential equations, estimate the growth properties of all solutions, and answer the question raised by Gundersen and Steinbart.展开更多
In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic ...In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic solutions of relevant difference equations.展开更多
In this paper, we estimate the number of subnormal solutions for higher order linear periodic differential equations, and estimate the growth of subnormal solutions and all other solutions. We also give a representati...In this paper, we estimate the number of subnormal solutions for higher order linear periodic differential equations, and estimate the growth of subnormal solutions and all other solutions. We also give a representation of subnormal solutions of a class of higher order linear periodic differential equations.展开更多
In this paper,the zeros of solutions of periodic second order linear differential equation y + Ay = 0,where A(z) = B(e z ),B(ζ) = g(ζ) + p j=1 b ?j ζ ?j ,g(ζ) is a transcendental entire function of l...In this paper,the zeros of solutions of periodic second order linear differential equation y + Ay = 0,where A(z) = B(e z ),B(ζ) = g(ζ) + p j=1 b ?j ζ ?j ,g(ζ) is a transcendental entire function of lower order no more than 1/2,and p is an odd positive integer,are studied.It is shown that every non-trivial solution of above equation satisfies the exponent of convergence of zeros equals to infinity.展开更多
In this paper, we study the existence of multiple positive periodic solutions for the second order differential equation x′′(t) + p(t)x′(t) + q(t)x(t) = f(t, x(t)).By using Krasnoselskii fixed point...In this paper, we study the existence of multiple positive periodic solutions for the second order differential equation x′′(t) + p(t)x′(t) + q(t)x(t) = f(t, x(t)).By using Krasnoselskii fixed point theorem, we establish some criteria for the existence and multiple positive periodic solutions for this differential equation.展开更多
In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,w...In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,which is an extension of Mawhin's existence theorem of periodic solutions of F.D.Es with finite delay.Second,as an application of it,we obtain the existence theorem of positive periodic solutions of the Lotka-Volterra equations:dx(t)/dt=x(t)(a-kx(t)-by(t)),dy(t)/dt=-cy(t)+d integral from n=0 to +∞ x(t-s)y(t-s)dμ(s)+p(t).展开更多
In this paper, using Fourier series, we study the problem of the existence of periodic solutionsof a type of periodic neutral differential difference system. Some necessary and sufficient conditionsfor the existence o...In this paper, using Fourier series, we study the problem of the existence of periodic solutionsof a type of periodic neutral differential difference system. Some necessary and sufficient conditionsfor the existence of periodic solutions of a type of neutral functional equation system are obtained,and at the same time, we present a method with formula shows how to find the periodicsolutions.展开更多
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εhl1(x) + ε2hl2(x),y=-x- ε(fn1(x)y(2p+1) + gm1(x))...Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εhl1(x) + ε2hl2(x),y=-x- ε(fn1(x)y(2p+1) + gm1(x)) + ∈2(fn2(x)y(2p+1) + gm2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials hl1 and hl2 have degree l;fn1and fn2 have degree n;and gm1,gm2 have degree m.p ∈ N and[·]denotes the integer part function.展开更多
For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if perio...For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.展开更多
Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are deriv...Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are derived. This gives further evidence in favor of the monodromy relations for the Floquet exponent proposed in the previous paper. In particular, the large energy asymptotic wave functions are related to the instanton partition function of N = 2 supersymmetric gauge theory with surface operator. A relevant number theoretic dessert is appended.展开更多
文摘In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s periodic solution theorem. Anexample of application is given at the end.
基金This work is supported by the National Science Fund of Peop1e's Republic of China
文摘A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.
基金This work was supported by the Brain Pool Program of Korea Federation of Science and Technology Societies (No. 072-1-3-0164)NURI Academy of Banking, Derivatives and Seeurites and Insurance, and the Natural Science Foundation of Guangdong Province in China (Grant No. 06025059)
文摘In this paper, we investigate the existence and the form of subnormal solution for a class of second order periodic linear differential equations, estimate the growth properties of all solutions, and answer the question raised by Gundersen and Steinbart.
基金Supported by National Natural Science Foundation of China(Grant Nos.11271380,11031002 and 11371058)Research Fund for the Doctoral Program of Higher Education(Grant No.20110003110004)+1 种基金the Grant of BeijingEducation Committee Key Project(Grant No.KZ201310028031)Natural Science Foundation of GuangdongProvince of China(Grant No.S2013010013212)
文摘In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic solutions of relevant difference equations.
基金The first author is supported by National Natural Science Foundation of China (Grant No. 10871076) the second author is supported by the Research Fund Program of Research Institute for Basic Sciences, Pusan National University, Korea, 2009, Project No. RIBS-PNU-2010-0066000 The authors are grateful to the referees for a number of helpful suggestions to improve the paper.
文摘In this paper, we estimate the number of subnormal solutions for higher order linear periodic differential equations, and estimate the growth of subnormal solutions and all other solutions. We also give a representation of subnormal solutions of a class of higher order linear periodic differential equations.
基金Supported by the National Natural Science Foundation of China (Grant No. 10871076)the Startup Foundation for Doctors of Jiangxi Normal University (Grant No. 2614)
文摘In this paper,the zeros of solutions of periodic second order linear differential equation y + Ay = 0,where A(z) = B(e z ),B(ζ) = g(ζ) + p j=1 b ?j ζ ?j ,g(ζ) is a transcendental entire function of lower order no more than 1/2,and p is an odd positive integer,are studied.It is shown that every non-trivial solution of above equation satisfies the exponent of convergence of zeros equals to infinity.
基金The Science Research Plan(Jijiaokehezi[2016]166)of Jilin Province Education Department During the 13th Five-Year Periodthe Science Research Starting Foundation(2015023)of Jilin Agricultural University
文摘In this paper, we study the existence of multiple positive periodic solutions for the second order differential equation x′′(t) + p(t)x′(t) + q(t)x(t) = f(t, x(t)).By using Krasnoselskii fixed point theorem, we establish some criteria for the existence and multiple positive periodic solutions for this differential equation.
基金This project is supported by the National Natural Science Foundation of Chinathe Laboratory for Nonlinear Mechanics of Continuous Media of Academia Sinica
文摘In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,which is an extension of Mawhin's existence theorem of periodic solutions of F.D.Es with finite delay.Second,as an application of it,we obtain the existence theorem of positive periodic solutions of the Lotka-Volterra equations:dx(t)/dt=x(t)(a-kx(t)-by(t)),dy(t)/dt=-cy(t)+d integral from n=0 to +∞ x(t-s)y(t-s)dμ(s)+p(t).
文摘In this paper, using Fourier series, we study the problem of the existence of periodic solutionsof a type of periodic neutral differential difference system. Some necessary and sufficient conditionsfor the existence of periodic solutions of a type of neutral functional equation system are obtained,and at the same time, we present a method with formula shows how to find the periodicsolutions.
文摘Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εhl1(x) + ε2hl2(x),y=-x- ε(fn1(x)y(2p+1) + gm1(x)) + ∈2(fn2(x)y(2p+1) + gm2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials hl1 and hl2 have degree l;fn1and fn2 have degree n;and gm1,gm2 have degree m.p ∈ N and[·]denotes the integer part function.
文摘For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.
基金supported by the FAPESP No.2011/21812-8,through IFT-UNESP
文摘Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are derived. This gives further evidence in favor of the monodromy relations for the Floquet exponent proposed in the previous paper. In particular, the large energy asymptotic wave functions are related to the instanton partition function of N = 2 supersymmetric gauge theory with surface operator. A relevant number theoretic dessert is appended.