To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was propos...To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was proposed in this study.After optimizing the conditions of magnetic intensity,feeding and pulsation,an SMS concentrate with TiO_(2) grade of 16.03% and TiO_(2) recovery of 66.39% was obtained through one roughing-one cleaning pre-concentration flowsheet.The specific magnetic force and magnetic force were calculated and analysed to illustrate the pre-concentration mechanism,and the results revealed that the combination of high magnetic field and strong pulsating resulted in the effective preconcentration of the ultrafine ilmenite in the SMS process.In addition,the magnetic force analysis indicated that the high magnetic intensity and high magnetic gradient are the key factors of the SMS technology.Furthermore,the EDS-Mapping detection certified that the ultrafine ilmenite was concentrated from the gangue minerals using SMS technology.展开更多
The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, ...The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, magnetic field intensity, pH value and flow-rate of sewage on phosphorus removal rate were investigated. The results show that addition of 200 mg/L Al2(SO4)3·18H2O and 300 mg/L Fe3O4, magnetic field intensity of 200 kA/m, pH value of 4.57.0 and flow-rate of 6.15 cm/s are both efficient and economic technical parameters for removal of phosphate. The pH value has a tremendous effect on the removal of phosphate. In the pH range of (4.5)7.0, more than 95% phosphate can be removed. Theoretical analysis indicates that the solubility of AlPO4 is minimum at pH 4.07.0 and the electrostatic attractive force between AlPO4 and Fe3O4 is maximum at pH 4.5(6.5.)展开更多
A new method-dry High Gradient Magnetic Separation (HGMS)-to remove iron from ultrafine kaolin powder is described. A new kind of disperser, which breaks down the particle clusters in the powder by high speed gas fl...A new method-dry High Gradient Magnetic Separation (HGMS)-to remove iron from ultrafine kaolin powder is described. A new kind of disperser, which breaks down the particle clusters in the powder by high speed gas flow from an air compressor, is used to completely disperse the powders. The dispersed particles are passed through vibrating HGMS by a vacuum pump to remove the iron. The magnetic and nonmagnetic fractions are separately collected by cloth collectors. Dry HGMS laboratory experiments are carried out. A product containing 0.90% Fe<sub>2</sub>O<sub>3</sub> was obtained, and the recovery was 70%.展开更多
The introduction of functionalized magnetizable particles and high-gradient magnetic separation represents a time and money saving alternative to conventional purification and separation unit operations in the biotech...The introduction of functionalized magnetizable particles and high-gradient magnetic separation represents a time and money saving alternative to conventional purification and separation unit operations in the biotechnical sector. This technique has some advantages especially for the recycling of immobilized enzymes. A new magnetic filter with sight glasses was constructed and produced to study the performance of high-gradient magnetic separation at varied parameters. By optical analysis the buildup of a clogging was identified as the major parameter which affected the separation performance. For the cleaning procedure, a two-phase flow of water with highly dispersed air bubbles was tested which led to a nearly complete cleaning of the filter chamber.展开更多
The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological pro...The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological process design. The selective separation of the magnetizable particles is performed for example by a high-gradient magnetic separator. In this study FEM and CFD simulations of the magnetic field and the fluid flow field within a filter chamber of a magnetic separator were carried out, to find an optimal separator design. The motion of virtual magnetizable particles was calculated with a one-way coupled Lagrangian approach in order to test many geometric and parametric variations in reduced time. It was found that a flow homogenisator smoothed the fluid flow, so that the linear velocity became nearly equal over the cross section in the direction of flow. Furthermore the retention of magnetizable particles increases with a high total edge length within the filter matrix.展开更多
The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results ...The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results show that the particle-accumulated layer is formed in the periphery of the solidified specimen when the diameter of the separated molten metal, the magnetic induction intensity and the separation time are 10 mm, 0.04 T and 1 s, respectively. When the separation time is 2 s, the particle-accumulated layer can be observed obviously and the separation efficiency is about 80%. There are few alumina particles in the inner of the solidified specimen when the separation time is 3 s. The separation efficiency higher than 85% can be achieved when the separation time is longer than 3 s. When the magnetic induction intensity is 0.06 T, the visible particle-accumulated layer can be formed in 1 s and the separation efficiency is higher than 95%. The experimental results were compared with the calculated results at last.展开更多
基金financial support from the Joint Fund (Key program U2067201) for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of China and the China National Nuclear CorporationNational key research and development program (2019YFC1907702) Sponsored by MOSTthe Fundamental Research Funds for the Central Universities (N2001013) for supporting this research。
文摘To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was proposed in this study.After optimizing the conditions of magnetic intensity,feeding and pulsation,an SMS concentrate with TiO_(2) grade of 16.03% and TiO_(2) recovery of 66.39% was obtained through one roughing-one cleaning pre-concentration flowsheet.The specific magnetic force and magnetic force were calculated and analysed to illustrate the pre-concentration mechanism,and the results revealed that the combination of high magnetic field and strong pulsating resulted in the effective preconcentration of the ultrafine ilmenite in the SMS process.In addition,the magnetic force analysis indicated that the high magnetic intensity and high magnetic gradient are the key factors of the SMS technology.Furthermore,the EDS-Mapping detection certified that the ultrafine ilmenite was concentrated from the gangue minerals using SMS technology.
文摘The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, magnetic field intensity, pH value and flow-rate of sewage on phosphorus removal rate were investigated. The results show that addition of 200 mg/L Al2(SO4)3·18H2O and 300 mg/L Fe3O4, magnetic field intensity of 200 kA/m, pH value of 4.57.0 and flow-rate of 6.15 cm/s are both efficient and economic technical parameters for removal of phosphate. The pH value has a tremendous effect on the removal of phosphate. In the pH range of (4.5)7.0, more than 95% phosphate can be removed. Theoretical analysis indicates that the solubility of AlPO4 is minimum at pH 4.07.0 and the electrostatic attractive force between AlPO4 and Fe3O4 is maximum at pH 4.5(6.5.)
基金The project was financially supported by China National Science and Technology Committee
文摘A new method-dry High Gradient Magnetic Separation (HGMS)-to remove iron from ultrafine kaolin powder is described. A new kind of disperser, which breaks down the particle clusters in the powder by high speed gas flow from an air compressor, is used to completely disperse the powders. The dispersed particles are passed through vibrating HGMS by a vacuum pump to remove the iron. The magnetic and nonmagnetic fractions are separately collected by cloth collectors. Dry HGMS laboratory experiments are carried out. A product containing 0.90% Fe<sub>2</sub>O<sub>3</sub> was obtained, and the recovery was 70%.
文摘The introduction of functionalized magnetizable particles and high-gradient magnetic separation represents a time and money saving alternative to conventional purification and separation unit operations in the biotechnical sector. This technique has some advantages especially for the recycling of immobilized enzymes. A new magnetic filter with sight glasses was constructed and produced to study the performance of high-gradient magnetic separation at varied parameters. By optical analysis the buildup of a clogging was identified as the major parameter which affected the separation performance. For the cleaning procedure, a two-phase flow of water with highly dispersed air bubbles was tested which led to a nearly complete cleaning of the filter chamber.
文摘The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological process design. The selective separation of the magnetizable particles is performed for example by a high-gradient magnetic separator. In this study FEM and CFD simulations of the magnetic field and the fluid flow field within a filter chamber of a magnetic separator were carried out, to find an optimal separator design. The motion of virtual magnetizable particles was calculated with a one-way coupled Lagrangian approach in order to test many geometric and parametric variations in reduced time. It was found that a flow homogenisator smoothed the fluid flow, so that the linear velocity became nearly equal over the cross section in the direction of flow. Furthermore the retention of magnetizable particles increases with a high total edge length within the filter matrix.
基金Projects(50474055, 50274018) supported by the National Natural Science Foundation of ChinaProject (20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The effects of separation time and magnetic induction intensity on the separation efficiency of alumina particles with diameters varying from 30 to 200 μm in aluminum melt were investigated. The experimental results show that the particle-accumulated layer is formed in the periphery of the solidified specimen when the diameter of the separated molten metal, the magnetic induction intensity and the separation time are 10 mm, 0.04 T and 1 s, respectively. When the separation time is 2 s, the particle-accumulated layer can be observed obviously and the separation efficiency is about 80%. There are few alumina particles in the inner of the solidified specimen when the separation time is 3 s. The separation efficiency higher than 85% can be achieved when the separation time is longer than 3 s. When the magnetic induction intensity is 0.06 T, the visible particle-accumulated layer can be formed in 1 s and the separation efficiency is higher than 95%. The experimental results were compared with the calculated results at last.