期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
In-situ study of the microstructure evolution during tension of a Mg-Y-Zn-Al alloy processed by rapidly solidified ribbon consolidation technique
1
作者 Jeno Gubicza Kristián Máthis +7 位作者 Péter Nagy Péter Jenei Zoltán Hegedus Andrea Farkas Jozef Vesely Shin-ichi Inoue Daria Drozdenko Yoshihito Kawamura 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2024-2040,共17页
Mg-Y-Zn-Al alloys processed by rapidly solidified ribbon consolidation(RSRC)technique exhibit an exceptional mechanical performance indicating promising application potential.This material has a bimodal microstructure... Mg-Y-Zn-Al alloys processed by rapidly solidified ribbon consolidation(RSRC)technique exhibit an exceptional mechanical performance indicating promising application potential.This material has a bimodal microstructure consisting of fine recrystallized and coarse non-recrystallized grains with solute-rich stacking faults forming cluster arranged layers(CALs)and nanoplates(CANaPs),or complete long period stacking ordered(LPSO)phase.In order to reveal the deformation mechanisms,in-situ synchrotron X-ray diffraction line profile analysis was employed for a detailed study of the dislocation arrangement created during tension in Mg-0.9%Zn-2.05%Y-0.15%Al(at%)alloy.For uncovering the effect of the initial microstructure on the mechanical performance,additional samples were obtained by annealing of the as-consolidated specimen at 300 and 400℃ for 2 h.The heat treatment at 300℃ had no significant effect on the initial microstructure,its evolution during tension and,thus,the overall deformation behavior under tensile loading.On the other hand,annealing at 400℃ resulted in a significant increase of the recrystallized grains fraction and a decrease of the dislocation density,leading to only minor degradation of the mechanical strength.The maximum dislocation density at the failure of the samples corresponding to the plastic strain of 10-25% was estimated to be about 16-20×10^(14)m^(-2).The diffraction profile analysis indicated that most dislocations formed during tension were of non-basal and pyramidal types,what was also in agreement with the Schmid factor values revealed independently from orientation maps.It was also shown that the dislocation-induced Taylor hardening was much lower below the plastic strain of 3% than above this value,which was explained by a model of the interaction between prismatic dislocations and CANaPs/LPSO plates. 展开更多
关键词 Mg-Zn-Y-Al alloy Long period stacking ordered(LPSO)phase Cluster arranged nanoplates(CANaPs) Annealing Tension Dislocation density Hardening
下载PDF
Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures 被引量:14
2
作者 Lisha Wang Jinghua Jiang +2 位作者 Huan Liu Bassiouny Saleh Aibin Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1208-1220,共13页
Mg-Y-Zn alloys with long period stacking ordered(LPSO)structure have received much attention recently and exhibit great potential in applications such as automotive,aerospace and in bio-medical fields.This paper aimed... Mg-Y-Zn alloys with long period stacking ordered(LPSO)structure have received much attention recently and exhibit great potential in applications such as automotive,aerospace and in bio-medical fields.This paper aimed to investigate the effect of different phase constitution of LPSO structures on corrosion rate of bio-medical Mg-Y-Zn alloys.The results showed that as-cast Mg98.5Y1Zn0.5 alloys containing only 18R structure exhibited the highest corrosion resistance with the corrosion rate of 2.78 mm/year.The precipitation of 14H lamellas within a-Mg grains during solid solution treatment introduced the crystallographic orientation corrosion by accelerating micro-galvanic corrosion.The increase of 18R/14H interfaces deteriorated the corrosion resistance,and the grain boundaries also suffered from severe electrochemical dissolution.This work suggested that Mg-Y-Zn alloys with single LPSO structure(either 18R or 14H)exhibited better corrosion resistance than alloys with co-existence 18R and I4H LPSO structures. 展开更多
关键词 Corrosion behavior Long period stacking ordered phase Magnesium alloys Solution treatment Bio-materials
下载PDF
Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures 被引量:6
3
作者 Yujin Nie Jianwei Dai +1 位作者 Xuan Li Xiaobo Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1124-1148,共25页
Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structu... Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structures have obtained increasing attention.However,the corrosion mechanism of the SF–or LPSO–containing Mg alloys has not been well illustrated and even reverse results have been reported.In this paper,we have reviewed recent reports on corrosion behaviors of SF–or LPSO–containing Mg alloys to better clarify and understand the significance and mechanism.Moreover,some deficiencies are presented and advises are proposed for the development of corrosion resistant Mg alloys with SF or LPSO structures. 展开更多
关键词 Magnesium alloys Corrosion behavior Stacking fault Long period stacking ordered
下载PDF
Effect of Li on formation of long period stacking ordered phases and mechanical properties of Mg-Gd-Zn alloy 被引量:2
4
作者 Li-yun Wei Jin-shan Zhang +3 位作者 Wei Liu Chun-xiang Xu Zhi-yong You Kai-bo Nie 《China Foundry》 SCIE 2016年第4期256-261,共6页
Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and t... Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and the mechanical properties were investigated. The results showed that Li is an effective element to refine the grains and break the eutectic networks in as-cast MgGd_3Zn_1 alloy. During solid solution treatment, these broken eutectic networks are spheroidized and highly dispersed. In addition, plentiful lamellar long period stacking ordered(LPSO) phases are precipitated in an α-Mg matrix when the Li addition is not more than 4%. Solid-solution treated Mg_(92)Gd_3Zn_1Li_4 alloy exhibits an optimal ultimate tensile strength(UTS) of 226 MPa and elongation of 5.8%. The strength of MgGd_3Zn_1 alloy is improved significantly, meanwhile, the toughness is apparently increased. 展开更多
关键词 Mg-Gd-Zn alloys LI second phase long period stacking ordered phase comprehensive properties
下载PDF
Effect of long period stacking ordered phase on damping capacities of as-cast Mg-Zn-Y alloys 被引量:2
5
作者 LU Ruo-peng DING Zhi-bing +1 位作者 WNANG Jing-feng ZHAO Yu-hong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第3期283-288,共6页
The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to incr... The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to increasedLPSO phase,grain size was refined.LPSO phase was advantageous to the damping properties of the Mg-Zn-Y alloys.Mg-7%Zn-12.8%Y has the highest damping capacity up to0.04.Due to stacking fault probability,the LPSO phase in the Mg-Zn-Yalloys could be new damping source to dissipate energy so as to contribute to the improvement of damping capacities. 展开更多
关键词 magnesium alloys DAMPING microstructure long period stacking ordered (LPSO) phase
下载PDF
Microstructure and mechanical properties of a compound reinforced Mg95Y2.5Zn2.5 alloy with long period stacking ordered phase and W phase 被引量:1
6
作者 Shou-zhong Wu Jin-shan Zhang +3 位作者 Chun-xiang Xu Kai-bo Nie Xiao-feng Niu Zhi-yong You 《China Foundry》 SCIE 2017年第1期34-38,共5页
The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic str... The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic structure phase (W phase), and the Mg95Y2.5Zn2.5 alloy has the best comprehensive mechanical properties. Subsequently, the microstructure evolution of the optimized alloy Mg95Y2.5Zn2.5 during solidification and heat treatment processes was analyzed and discussed by means of OM, SEM, TEM, XRD and DTA. After heat treatment, the lamellar phase 14H-LPSO precipitated in a-Mg and W phase transforms into particle phase (MgyZn2). Due to the compound reinforcement effect of the particle phase and LPSO phase (18R+14H), the mechanical properties of the alloy are enhanced. The tensile strength and elongation of the Mg95Y2.5Zn2.5 alloy is improved by 9.1% and 31.3% to 215 MPa and 10.5%, respectively, after solid-solution treatment. 展开更多
关键词 magnesium alloys Mg95Y2.5Zn2.5 alloy long period stacking ordered (LPSO) W phase compound reinforcement
下载PDF
Dilute long period stacking/order(LPSO)-variant phases along the composition gradient in a Mg-Ho-Cu alloy 被引量:2
7
作者 Kai Guan Daisuke Egusa Eiji Abe 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1573-1580,共8页
We have systematically investigated the microstructures of as-cast Mg_(97.49)Ho_(1.99)Cu_(0.43)Zr_(0.09)alloy by atomic resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM), r... We have systematically investigated the microstructures of as-cast Mg_(97.49)Ho_(1.99)Cu_(0.43)Zr_(0.09)alloy by atomic resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM), revealing the coexistence of 18R, 14H and 24R long period stacking/order(LPSO) phases with fully coherent interfaces along step-like composition gradient in a blocky intermetallic compound distributed at grain boundary. The short-range order(SRO) L1_(2)-type Cu_(6)Ho_(8)clusters embedded across AB’C’A-stacking fault layers are directly revealed at atomic scale. Importantly, the order degree of SRO clusters in the present dilute alloy is significant lower than previous 6M and 7M in-plane order reported in ternary Mg-TM(transition metal)-RE(rare earth) alloys, which can be well matched by 9M in-plane order. This directly demonstrates that SRO in-plane L1_(2)-type clusters can be expanded into more dilute composition regions bounded along the definite TM/RE ratio of 3/4. In addition, the estimated chemical compositions of solute enriched stacking fault(SESF) in all LPSO variants are almost identical with the ideal SESF composition of 9M in-plane order, regardless of the type of LPSO phases. The results further support the viewpoint that robust L1_(2)-type TM_(6)RE_(8)clusters play an important role in governing LPSO phase formation. 展开更多
关键词 Magnesium alloys Long period stacking/order(LPSO)phases Short-range order(SRO)clusters High-angle annular dark field scanning transmission electron microscopy(HAADF-STEM)
下载PDF
Periodic Solutions of a Cooperative System with State Feedback Control
8
作者 黄明湛 刘守宗 宋新宇 《Chinese Quarterly Journal of Mathematics》 2016年第3期279-287,共9页
In this paper, we propose a semi-continuous dynamical system to study the cooperative system with feedback control. Based on geometrical analysis and the analogue of Poincare criterion, the existence and stability of ... In this paper, we propose a semi-continuous dynamical system to study the cooperative system with feedback control. Based on geometrical analysis and the analogue of Poincare criterion, the existence and stability of the positive order one periodic solutions are given. Numerical results are carried out to illustrate the feasibility of our main results. 展开更多
关键词 cooperative system feedback control order one periodic solution orbitally asymptotically stable
下载PDF
Achieving high-strain-rate and low-temperature superplasticity in an ECAP-processed Mg-Y-Er-Zn alloy via Ag addition
9
作者 Haoran Wu Jinghua Jiang +5 位作者 Zhenquan Yang Mengjia Li He Huang Ningfei Ge Aibin Ma Huan Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3765-3778,共14页
The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by e... The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by equal channel angular pressing was altered to a non-basal structure upon the addition of Ag.Ag addition also refined the grain size and promoted the formation of a large number of nano-14H-long period stacking ordered phases.Using high-resolution transmission electron microscopy,many nano-precipitated phases were detected on the basal plane of the Mg-Y-Er-Zn-1Ag(WEZ612-1Ag) alloy,The nano-precipitated phases on the basal plane improved the thermal stability of the alloy,lowered the deformation activation energy(Q),and improved the stress sensitivity index(m).At 523 K with a strain rate of 10^(-2) s^(-1),the Q value of WEZ612 was higher than that of WEZ612-1Ag(299.14 and 128.5 kJ mol^(-1),respectively).In contrast,the m value of the WEZ612 alloy(0.16) was lower than that of the WEZ612-1Ag alloy(0.46).At 623 K with a tensile rate of 10^(-2) s^(-1),the WEZ612 and WEZ612-1Ag alloys were elongated by 182% and 495%,respectively,with the latter exhibiting high-strain-rate and low-temperature superplasticity.The improved superplasticity of the WEZ612-1Ag alloy is attributed to the nano-precipitated phases,which effectively limit the cavity extension during superplastic deformation. 展开更多
关键词 Magnesium alloys Long period stacking ordered(LPSO) Ag addition Nano-precipitates Superplastic behavior
下载PDF
Microstructure and tribological behavior of Mg-Gd-Zn-Zr alloy with LPSO structure 被引量:4
10
作者 曹丽杰 吴玉娟 +2 位作者 彭立明 王渠东 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3785-3791,共7页
A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribologica... A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy. 展开更多
关键词 Mg-Gd-Zn-Zr alloy long period stacking ordered (LPSO) structure MICROSTRUCTURE friction wear
下载PDF
Dual phases strengthening behavior of Mg-10Gd-1Er-1Zn-0.6Zr alloy 被引量:5
11
作者 Lin-yue JIA Wen-bo DU +3 位作者 Zhao-hui WANG Ke LIU Shu-bo LI Zi-jian YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期635-646,共12页
The microstructure evolution and strengthening mechanisms of Mg-10Gd-1Er-1Zn-0.6Zr(wt.%) alloy were focused in the view of the size parameters and volume fraction(fp) of dual phases(long period stacking ordered(LPSO) ... The microstructure evolution and strengthening mechanisms of Mg-10Gd-1Er-1Zn-0.6Zr(wt.%) alloy were focused in the view of the size parameters and volume fraction(fp) of dual phases(long period stacking ordered(LPSO) structures and β’ precipitates).Results show that two types of LPSO phases with different morphologies formed,and the morphology and size of both LPSO phases varied with the solution conditions.However,the volume fraction decreased monotonously with increasing solution temperature,which in turn raised the volume fraction of β’ phase during aging.The alloy exhibited an ultimate tensile strength of 352 MPa,a yield strength of 271 MPa,and an elongation of 3.5% after solution treatment at 500℃ for 12 h and aging at 200℃ for 114 h.In contrast to the LPSO phase,the β’ phase seems to play a more important role in enhancing the yield strength,and consequently,a decreased fLPSO/fβ’,ratio results in an increased yield strength. 展开更多
关键词 magnesium alloys heat treatment long period stacking ordered(LPSO) structures PRECIPITATE mechanical properties
下载PDF
Cooling rate controlled basal precipitates and age hardening response of solid-soluted Mg-Gd-Er-Zn-Zr alloy 被引量:5
12
作者 Jinlong Fu Wenbo Du +3 位作者 Linyue Jia Yunfeng Wang Xunming Zhu Xian Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1267-1277,共11页
The precipitation and age hardening response of the solid-soluted Mg–10Gd–1Er–1Zn–0.6Zr(wt.%)alloy performed by water-quenching(QC),air-cooling(AC)and furnace-cooling(FC)in terms of the volume fraction of precipit... The precipitation and age hardening response of the solid-soluted Mg–10Gd–1Er–1Zn–0.6Zr(wt.%)alloy performed by water-quenching(QC),air-cooling(AC)and furnace-cooling(FC)in terms of the volume fraction of precipitates and tensile properties were investigated in present paper.Results indicated the solid-soluted alloy contained stacking faults(SFs)and long period stacking ordered(LPSO)phase on the basal planes regardless of the cooling rate,but a larger volume fraction of the LPSO phase was formed with decreasing in the cooling rate.After aging,βandβ1 phases precipitated on the prismatic planes,and their number density decreased but mean particle size increased with decreasing in the cooling rate.The solid-soluted alloys(QC,AC and FC samples)showed no apparent difference in yield strength(YS),but their correspondent peak-aged alloys exhibited sharp difference in hardening response.The strongest hardening response took place in the QC sample and showed 82MPa enhancement in YS,which was much larger than that of AC(+26MPa)and FC samples(+5MPa).The reason lies in that the higher cooling rate promotes the precipitation and reduces the average size ofβprecipitate.A novel cooling-rate controlled precipitation model with respect to the correlation of precipitates on basal and prismatic planes was established.From this model,the basal precipitates showed a restrictive effect on the growth and/or coarsening ofβprecipitate,and composite precipitates containing theβphase with fine size as well as high area-number density and lower volume fraction of the LPSO phase are preferred to strengthen the Mg–10Gd–1Er–1Zn–0.6Zr alloy. 展开更多
关键词 Magnesium alloy Long period stacking ordered(LPSO) Stacking faults(SFs) Cooling rate Tensile properties
下载PDF
Towards high strength cast Mg-RE based alloys:Phase diagrams and strengthening mechanisms 被引量:4
13
作者 Janet M.Meier Josh Caris Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1401-1427,共27页
Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,micr... Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,microstructure,and strengthening mechanisms of these multicomponent systems are very complex and often not well understood in literature.We have calculated phase diagrams of important binary,ternary,and multicomponent RE-containing alloy systems,using CALPHAD(CALculation of PHAse Diagrams).Based on these phase diagrams,this paper offers a critical overview on phase equilibria and strengthening mechanisms in these alloy systems,including precipitation,long period stacking order(LPSO),and other intermetallic phases.This review also summarized several promising Mg-RE based cast alloys in comparison with commercial WE54 and WE43 alloys;and explored new strategies for future alloy development for high strength applications.It is pointed out that the combination of precipitation and LPSO phases can lead to superior strength and ductility in Mg-RE based cast alloys.The precipitates and LPSO phases can form a complex three-dimensional network that effectively impedes dislocation motion on the basal and non-basal planes.The LPSO phases can also prevent the coarsening of precipitates when they interact,thus providing good thermal stability at elevated temperatures.Future research is needed to determine how the combination of these two types of phases can be used in alloy design and industrial scale applications. 展开更多
关键词 Magnesium alloys Phase diagrams Precipitation strengthening Long period stacking order(LPSO) Alloy development CALPHAD
下载PDF
Phase equilibria and microstructure investigation of Mg-Gd-Y-Zn alloy system 被引量:1
14
作者 Janet M.Meier Jiashi Miao +4 位作者 Song-Mao Liang Jun Zhu Chuan Zhang Josh Caris Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期746-755,共10页
In order to develop high strength Mg-Gd-Y-Zn alloys,key experiments coupled with CALPHAD(CALculation of PHAse Diagrams)calculations were carried out in the current work to provide critical understanding of this import... In order to develop high strength Mg-Gd-Y-Zn alloys,key experiments coupled with CALPHAD(CALculation of PHAse Diagrams)calculations were carried out in the current work to provide critical understanding of this important alloy system.Three Mg-10 Gd-xY-yZn(x=4 or 5,y=3 or 5,wt.%) were mapped on Mg-Gd-Y-Zn phase diagrams for phase equilibria and microstructure investigation.Electron microscopy was performed for phase identification and phase fraction determination in as-cast and solution treated conditions.In all three alloys,the major phases were Mg-matrix and long period stacking order(LPSO) 14 H phase.With ST at 400 and 500℃,the phase fraction of LPSO 14 H increased,particularly the fine lamellar morphology in the Mg matrix.The as-cast and 400℃ Mg10 Gd5 Y3 Zn samples had Mg(Gd,Y) present.At 500℃,Mg(Gd,Y) is not stable and transforms into LPSO 14 H.The Mg 10 Gd5 Y5 Zn alloy included the WPhase,which showed a reduction in phase fraction with solution treatment.These experimental results were used to validate and improve the thermodynamic database of the Mg-Gd-Y-Zn system.Thermodynamic calculations using the improved database can well describe the available experimental results and make accurate predictions to guide the development of promising high-strength Mg-Gd-Y-Zn alloys. 展开更多
关键词 Long period stacking order(LPSO) MICROSTRUCTURE Magnesium alloys CALPHAD Alloy development.
下载PDF
ON A SYSTEM OF SECOND ORDER DIFFERENTIAL EQUATIONS WITH PERIODIC IMPULSE COEFFICIENTS
15
作者 秦朝斌 秦元勋 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1989年第4期298-309,共12页
A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be appl... A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients. 展开更多
关键词 exp TH PER ON A SYSTEM OF SECOND order DIFFERENTIAL EQUATIONS WITH periodic IMPULSE COEFFICIENTS 甲万 肠气
原文传递
Spherical periodicity as structural homology of crystalline and amorphous states 被引量:1
16
作者 张爽 董丹丹 +2 位作者 王子鉴 董闯 Peter H?ussler 《Science China Materials》 SCIE EI CSCD 2018年第3期409-416,共8页
It has been widely accepted that spherical per- iodicity generally dominates liquid and amorphous structure formation, where atoms tend to gather near spherically peri- odic shells according to Friedel oscillation. He... It has been widely accepted that spherical per- iodicity generally dominates liquid and amorphous structure formation, where atoms tend to gather near spherically peri- odic shells according to Friedel oscillation. Here it is revealed that the same order is just hidden in the atomic global packing modes of the crystalline phases relevant to bulk metallic glasses. Among the multiple nearest-neighbor dusters devel- oped from all the non-equivalent atomic sites in a given phase, there always exists a principal duster, centered by which the spherical periodicity, both topologically and chemically, is the most distinct. Then the principal dusters plus specific glue atoms just constitute the cluster-plus-glue-atom structural units shared by both metallic glasses and the corresponding crystalline phases. It is further pointed out that the spherical periodicity order represents the common structural homology of crystalline and amorphous states in the medium-range through scrutinizing all binary bulk-glass-relevant phases in Cu-(Zr, Hf), Ni-(Nb, Ta), Al-Ca, and Pd-Si systems. 展开更多
关键词 spherical periodicity order Friedel oscillation me-tallic glasses cluster-plus-glue-atom model principal cluster
原文传递
Formation Behavior of 14H Long Period Stacking Ordered Structure in Mg–Y–Zn Cast Alloys with Different α-Mg Fractions 被引量:4
17
作者 Huan Liu Feng Xue +2 位作者 Jing Bai Aibin Ma Jinghua Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1267-1273,共7页
Phase compositions and microstructure evolutions of three Mg-Y-Zn cast alloys during isothermal annealing at 773 K have been systematically investigated to clarify the formation behavior of 14 H long period stacking o... Phase compositions and microstructure evolutions of three Mg-Y-Zn cast alloys during isothermal annealing at 773 K have been systematically investigated to clarify the formation behavior of 14 H long period stacking ordered(LPSO) structure from α-Mg grains.The annealed microstructure characteristics indicate that the 18 R phase is thermal stable in Mg86Y8Zn6 alloy where 18 R serves as matrix,and 14 H lamellar phase only forms within tiny α-Mg slices(less than 1% for volume fraction).The α-Mg grains in Mg88Y8Zn4 and Mg89Y8Zn3 alloys exhibit cellular shape,and 14 H phase forms and develops into lamellar shape in these cellular grains after annealing.The results suggest that the presence of α-Mg grains is a requirement for the generation of 14 H phase.The nucleation and growth rates of 14 H lamellas are accelerated in α-Mg grains with higher concentrations of stacking faults and solute atoms.Moreover,the 14 H lamellas are parallel to adjacent 18 R plates in Mg86Y8Zn6 alloy,but the 14 H phase precipitated in cellularα-Mg grains of Mg88Y8Zn4 and Mg89Y8Zn3 alloys exhibits random orientation relationship with surrounding 18 R phase,indicating that the orientation relationship between 14 H and 18 R phases depends on the relationship between α-Mg grains and 18 R phase. 展开更多
关键词 Mg-Y-Zn α-Mg grain Long period stacking ordered phase Annealing 14H
原文传递
EFFICIENT SIXTH ORDER P-STABLE METHODS WITH MINIMAL LOCAL TRUNCATION ERROR FOR y"=f(x,y)
18
作者 Kai-li Xiang R.M.Thomas 《Journal of Computational Mathematics》 SCIE CSCD 2002年第2期175-184,共10页
A family of symmetric (hybrid) two step sixth P-stable methods for the accurate numerical integration of second order periodic initial value problems have been considered in this paper. These methods, which require on... A family of symmetric (hybrid) two step sixth P-stable methods for the accurate numerical integration of second order periodic initial value problems have been considered in this paper. These methods, which require only three (new) function evaluation per iteration and per step integration. These methods have minimal local truncation error (LTE) and smaller phase-lag of sixth order than some sixth orders P-stable methods in [1-3,10-11]. The theoretical and numerical results show that these methods in this paper are more accurate and efficient than some methods proposed in [1-3,10]. 展开更多
关键词 second order periodic initial value problems P-stable PHASE-LAG local truncation error
全文增补中
Microstructure and yield phenomenon of an extruded Mg-Y-Cu alloy with LPSO phase 被引量:3
19
作者 Guangli Bi Niuming Zhang +6 位作者 Jing Jiang Yuandong Li Tijun Chen Wei Fu Xiaoru Zhang Daqing Fang Xiangdong Ding 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期454-461,I0005,共9页
A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking ord... A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking order(LPSO)phase,eutectic phase(Mg_(20)Cu_(4)Y_(1)),and Mg_(2)Cu phase.The 18R LPSO phase at the dendritic grain boundary transforms into the 14H LPSO phase in the grain interior during homogenization.After extrusion,the grain size of the homogenized alloy is remarkably refined to-3.69μm and the second phase is significantly broken and distributed in the extrusion direction.Tensile testing curves of the extrude alloy at room temperature indicate that the yield strength and ultimate tensile strength increase while the elongation of the alloy decreases with increasing strain rate.Interestingly,a yield plateau fo rms and gradually decreases with increasing strain rate.The yield phenomenon is related to the dislocation multiplication and the interaction between the movable dislocations and solute atoms. 展开更多
关键词 Extruded Mg-6.8Y-2.5Cu alloy Long period stacking order phase MICROSTRUCTURE Yield phenomenon Rare earths
原文传递
Hot Compression Behavior of Mg-Gd-Y-Zn-Zr Alloy Containing LPSO with Different Morphologies
20
作者 Rui Guo Xi Zhao +3 位作者 Bo-Wen Hu Xue-Dong Tian Qiang Wang Zhi-Min Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第10期1680-1698,共19页
In this study,hot compression behavior of as-homogenized Mg-9Gd-4Y-2Zn-0.5Zr alloys containing long period ordered(LPSO)phases with different initial morphologies was investigated under a strain rate of 0.01 s−1 at 45... In this study,hot compression behavior of as-homogenized Mg-9Gd-4Y-2Zn-0.5Zr alloys containing long period ordered(LPSO)phases with different initial morphologies was investigated under a strain rate of 0.01 s−1 at 450°C.The microstructure,texture evolution and dynamic recrystallization(DRX)mechanism under different strains(0.1,0.3,0.5,0.7,and 1.4)were studied.Under compression conditions,the block-shape phase and deformedα-Mg matrix were regularly arranged vertically in the compression direction(CD).The particle phase(Mg5RE)and amount of kink bands were produced.The degree of kink increased initially and decreased significantly when the deformation strain reached 1.4.Three DRX mechanisms were produced during the compression process:(i)The block LPSO,Mg5RE and Zr-Zn phase activated DRX through the particle stimulated nucleation(PSN)mechanism.(ii)Several DRX activated on the serrated grain boundary between the two parent grains through discontinuous DRX(DDRX)mechanism.(iii)A large number of kink bands and larger spacing of lamellar LPSO increased the nucleation of DRX through continuous DRX(CDRX)mechanism.The combination of different recrystallization mechanisms has evident effects on grain refinement.DRX increased as compression proceeds,and the texture was gradually weakened. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Compression Long period ordered(LPSO)phase Recrystallization mechanism
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部