In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-p...In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.展开更多
In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the mode...In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under som...We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.展开更多
Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for ...Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for the first time.Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions,the soliton solution,the one-and the two-periodic solutions.Furthermore,it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.展开更多
We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the con...We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the convex and nonconvex problems.We also show the existence of extremal periodic solutions and provide a strong relaxation theorem.Finally,we provide an application to nonlinear periodic control systems.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ...A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.展开更多
Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)top...Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wave...The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wavelength of 1555.5 nm,the stable mode-locked pulse with width of 656 fs,repetition rate of 20.16 MHz,and high signal-to-noise ratio of 82.07 dB is experimentally obtained.Additionally,experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17,period-2 and period-32,period-3 and period-36 are verified via simulations.展开更多
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with...The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.展开更多
Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematic...Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this...Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.展开更多
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
基金partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100523,KJQN202000536)the National Natural Science Foundation of China(12001074)+3 种基金the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0606)supported by the National Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0278)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202100503)the Research Project of Chongqing Education Commission(CXQT21014)。
文摘In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.
基金the NSF of Guangxi(2021GXNSFFA196004,GKAD23026237)the NNSF of China(12001478)+4 种基金the China Postdoctoral Science Foundation(2022M721560)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECHthe National Science Center of Poland under Preludium Project(2017/25/N/ST1/00611)the Startup Project of Doctor Scientific Research of Yulin Normal University(G2020ZK07)the Ministry of Science and Higher Education of Republic of Poland(4004/GGPJII/H2020/2018/0,440328/Pn H2/2019)。
文摘In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by National Natural Science Foundation of China(11971202)Outstanding Young foundation of Jiangsu Province(BK20200042)。
文摘We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.
基金the National National Science Foundation of China(Grant Nos.52171251,U2106225,and 52231011)the Science and Technology Innovation Fund of Dalian City(Grant No.2022JJ12GX036)。
文摘Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for the first time.Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions,the soliton solution,the one-and the two-periodic solutions.Furthermore,it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.
基金supported by the NSFC(12071413)the Guangxi Natural Sci-ence Foundation(2023GXNSFAA026085)the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECH。
文摘We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the convex and nonconvex problems.We also show the existence of extremal periodic solutions and provide a strong relaxation theorem.Finally,we provide an application to nonlinear periodic control systems.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
文摘A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074107 and 12304195)the Program of Outstanding Young and Middle-Aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province(Grant No.T2020001)+2 种基金the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2022CFA012)the Chutian Scholars Program in Hubei Province,the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230751)the Postdoctoral Innovation Research Program in Hubei Province(Grant No.351342)。
文摘Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261131495 and 12475008)the Scientific Research and Developed Fund of Zhejiang A&F University(Grant No.2021FR0009).
文摘The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wavelength of 1555.5 nm,the stable mode-locked pulse with width of 656 fs,repetition rate of 20.16 MHz,and high signal-to-noise ratio of 82.07 dB is experimentally obtained.Additionally,experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17,period-2 and period-32,period-3 and period-36 are verified via simulations.
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
文摘The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.
文摘Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
基金supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.