There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources ...There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.展开更多
The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain ...The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain chains. Annual runoff generally increases with precipitation which is augmented southward by the rise in topography. Rainfall, snow melt, glacier melt and groundwater are the primary sources of stream flow, and the presence of permafrost enhances the flashiness of runoff response to rainfall and snowmelt events. Peak flows are concentrated between June and September. And winter is low flow season. Three types of runoff patterns may be distinguished according to their primary sources of water supply: snowmelt and rainfall, glacier melt and snowmelt, and groundwater. Large rivers generally drain more than one environments and their runoff regime reflects an integration of the various flow patterns on the plateau.展开更多
Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community.As the world’s third pole,the global warming amplifier,and the...Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community.As the world’s third pole,the global warming amplifier,and the starting region of China’s climate change,the Qinghai-Tibet Plateau is extremely sensitive to climate change.The permafrost on the Qinghai-Tibet Plateau is rich in natural gas hydrates(NGHs)resources.Under the background of global warming,whether the NGHs will be disassociated and enter the atmosphere as the air temperature rises has become a major concern of both the public and the scientific community.Given this,this study reviewed the trend of global warming and accordingly summarized the characteristics of the temperature increase in the Qinghai-Tibet Plateau.Based on this as well as the distribution characteristics of the NGHs in the permafrost on the Qinghai-Tibet Plateau,this study investigated the changes in the response of the NGHs to global warming,aiming to clarify the impacts of global warming on the NGHs in the permafrost of the plateau.A noticeable response to global warming has been observed in the Qinghai-Tibet Plateau.Over the past decades,the increase in the mean annual air temperature of the plateau was increasingly high and more recently.Specifically,the mean annual air temperature of the plateau changed at a rate of approximately 0.308-0.420℃/10a and increased by approximately 1.54-2.10℃in the past decades.Moreover,the annual mean ground temperature of the shallow permafrost on the plateau increased by approximately 1.155-1.575℃and the permafrost area decreased by approximately 0.34×10^(6)km^(2) from about 1.4×10^(6)km^(2) to 1.06×10^(6)km^(2) in the past decades.As indicated by simulated calculation results,the thickness of the NGH-bearing permafrost on the Qinghai-Tibet Plateau has decreased by 29-39 m in the past 50 years,with the equivalent of(1.69-2.27)×10^(10)-(1.12-1.51)×10^(12)m^(3) of methane(CH_(4))being released due to NGHs dissociation.It is predicted that the thickness of the NGH-bearing permafrost will decrease by 23 m and 27 m,and dissociated and released NGHs will be the equivalent of(1.34-88.8)×10^(10)m^(3) and(1.57-104)×10^(10)m^(3)of CH_(4),respectively by 2030 and 2050.Considering the positive feedback mechanism of NGHs on global warming and the fact that CH_(4) has a higher greenhouse effect than carbon dioxide,the NGHs in the permafrost on the Qinghai-Tibet Plateau will emit more CH_(4) into the atmosphere,which is an important trend of NGHs under the background of global warming.Therefore,the NGHs are destructive as a time bomb and may lead to a waste of efforts that mankind has made in carbon emission reduction and carbon neutrality.Accordingly,this study suggests that human beings should make more efforts to conduct the exploration and exploitation of the NGHs in the permafrost of the Qinghai-Tibet Plateau,accelerate research on the techniques and equipment for NGHs extraction,storage,and transportation,and exploit the permafrost-associated NGHs while thawing them.The purpose is to reduce carbon emissions into the atmosphere and mitigate the atmospheric greenhouse effect,thus contributing to the global goal of peak carbon dioxide emissions and carbon neutrality.展开更多
Due to the great influences of both climate warming and human activities,permafrost on the Qinghai-Xizang Plateau(QXP) has been undergoing considerable degradation.Continuous degradation of plateau permafrost dramatic...Due to the great influences of both climate warming and human activities,permafrost on the Qinghai-Xizang Plateau(QXP) has been undergoing considerable degradation.Continuous degradation of plateau permafrost dramatically modifies the regional water cycle and hydrological processes,affecting the hydrogeological conditions,and ground hydrothermal status in cold regions.Permafrost thawing impacts the ecological environment,engineering facilities,and carbon storage functions,releasing some major greenhouse gases and exacerbating climate change.Despite the utilization of advanced research methodologies to investigate the changing hydrological processes and the corresponding influencing factors in permafrost regions,there still exist knowledge gaps in multivariate data,quantitative analysis of permafrost degradation's impact on various water bodies,and systematic hydrological modeling on the QXP.This review summarizes the main research methods in permafrost hydrology and elaborates on the impacts of permafrost degradation on regional precipitation distribution patterns,changes in surface runoff,expansion of thermokarst lakes/ponds,and groundwater dynamics on the QXP.Then,we discuss the current inadequacies and future research priorities,including multiple methods,observation data,and spatial and temporal scales,to provide a reference for a comprehensive analysis of the hydrological and environmental effects of permafrost degradation on the QXP under a warming climate.展开更多
The permafrost in Qinghai-Tibet Plateau(QTP)has long been the focus of many researchers.In this study,we first use the method that integrates synthetic aperture radar(SAR)intensity and phase information to monitor per...The permafrost in Qinghai-Tibet Plateau(QTP)has long been the focus of many researchers.In this study,we first use the method that integrates synthetic aperture radar(SAR)intensity and phase information to monitor permafrost environment in the Beiluhe Region,using time series advanced SAR images.The backscattering coefficients(σ^(0))and deformation were extracted for the main features,and the influences of meteorological conditions to them were also quantified.The results show that both the change inσ^(0)and surface deformation are closely related to the active layer,and the deformation is also affected by the permafrost table.First,over meadow and sparse vegetation regions,σ^(0)rose about 6.9 and 4 dB from the freezing to thawing period,respectively,which can be mainly attributed to the thaw of the active layer and increased precipitation.Second,seasonal deformation,derived from the freeze-thaw cycle of the active layer,was characteristic of frost heave and thaw settlement and exhibited a negative correlation with air temperature.Its magnitude was larger than 1 cm in a seasonal cycle.Last,significant secular settlement was observed,with rates ranging from-16 to 2 mm/a,and it was primarily due to the thaw of the permafrost table caused by climate warming.展开更多
Numerical simulation indicates that the future thermal regime of permafrost on Qinghai-Xizang Plateau will change as the air temperature continuously rises at 0.04℃/a. The calculated results show that when Ts are 0, ...Numerical simulation indicates that the future thermal regime of permafrost on Qinghai-Xizang Plateau will change as the air temperature continuously rises at 0.04℃/a. The calculated results show that when Ts are 0, -0.5, -1.5, -2.5, -3.5 and - 4.5℃ under equilibium between climate and permafrost thermal regime, the mean annual temperatures at the depth of 14 m correspondingly equal to -0.11, -0.59, -1.52, -2.45, -3.21 and -4.32℃, and the permafrost thicknesses respectively equal to 16.8, 29.0, 54.1, 79.4, 112.1 and 131.0m. 50 years later, the temperatures at the depth of 14m will rises to 0.0, 0.0, -0.36, -1.23, -2.16, -3.06℃ under the given condition. When TS is lower than -1.1℃, the permafrost will respectively change from initial 2.0, 1.8, 1.6, 1.4m to 2.2, 2.0, 1.8, 1.6m for TS=-1.5, -2.5. - 3.5 and -4.5℃. If TS is higher than - 1.1℃, the frozen ground will change from the attachment type of frozen ground into the detachment type of frozen ground. Therefore, if future air temperature rises at 0.04℃ a or lower, the decrease area of the permafrost on Qinghai-Xizang Plateau may not be over 30℃. The areas includes those changing from the attachment of frozen ground into the detachment of frozen ground. If the area of detachment of frozen ground is not included, the decrease area may only be 3℃ within 50 a.展开更多
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil...Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angles of grassland coverage and biological production the variation characteristics of high-cold eco- systems in different representative regions and different geomorphologic units under different climatic conditions were quantitatively assessed. In the future, adopting effective measures to protect permafrost is of vital importance to maintaining the stability of permafrost engineering and alpine cold eco- systems in the plateau.展开更多
During the period from 25 to 17 Ma BP, when the second plateau uplifting, i.e. the second phase of the Himalaya movement, occurred, the Qinghai-Xizang Plateau reached an altitude high enough to chbge the situation of ...During the period from 25 to 17 Ma BP, when the second plateau uplifting, i.e. the second phase of the Himalaya movement, occurred, the Qinghai-Xizang Plateau reached an altitude high enough to chbge the situation of the general circulation. Such an effect of the plateau on the atmospheric circulation was accompanied by the warrning of the tropical ocean, the enhancement of the cross equatorial current, the enlargement of the marginal sea basins in the east-southeastern Asia, the westward extending of the Asian continent and the regression of the Paratethys Sea. As a result, the thermal difference was enlarged, and the air currents were enhanced between continents and oceans; finally the Asian monsoon system, mainly the summer monsoon, was initiated. The former planet wind system was then substituted by the monsoon system, and this caused the important environmental changes, such as the large shrinkage of the dry steppe in Central Asia, and the extension of the humid forest zone in East Asia. Thme changes have been dated at 21.8 Ma BP on the Lingxia profile in the northeastern border of the Tibet Plateau, when the savanna was transformed into the forest.展开更多
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program,grant number 2019QZKK0905the National Natural Science Foundation of China,grant number 42272339,42201162,42101121the Research Project of the State Key Laboratory of Frozen Soils Engineering,grant number SKLFSE-ZQ-58,SKLFSE-ZT-202203,SKLFSE-ZY-20.
文摘There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.
文摘The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain chains. Annual runoff generally increases with precipitation which is augmented southward by the rise in topography. Rainfall, snow melt, glacier melt and groundwater are the primary sources of stream flow, and the presence of permafrost enhances the flashiness of runoff response to rainfall and snowmelt events. Peak flows are concentrated between June and September. And winter is low flow season. Three types of runoff patterns may be distinguished according to their primary sources of water supply: snowmelt and rainfall, glacier melt and snowmelt, and groundwater. Large rivers generally drain more than one environments and their runoff regime reflects an integration of the various flow patterns on the plateau.
基金supported by the projects of the China Geological Survey(DD20190102,DD20221857).
文摘Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community.As the world’s third pole,the global warming amplifier,and the starting region of China’s climate change,the Qinghai-Tibet Plateau is extremely sensitive to climate change.The permafrost on the Qinghai-Tibet Plateau is rich in natural gas hydrates(NGHs)resources.Under the background of global warming,whether the NGHs will be disassociated and enter the atmosphere as the air temperature rises has become a major concern of both the public and the scientific community.Given this,this study reviewed the trend of global warming and accordingly summarized the characteristics of the temperature increase in the Qinghai-Tibet Plateau.Based on this as well as the distribution characteristics of the NGHs in the permafrost on the Qinghai-Tibet Plateau,this study investigated the changes in the response of the NGHs to global warming,aiming to clarify the impacts of global warming on the NGHs in the permafrost of the plateau.A noticeable response to global warming has been observed in the Qinghai-Tibet Plateau.Over the past decades,the increase in the mean annual air temperature of the plateau was increasingly high and more recently.Specifically,the mean annual air temperature of the plateau changed at a rate of approximately 0.308-0.420℃/10a and increased by approximately 1.54-2.10℃in the past decades.Moreover,the annual mean ground temperature of the shallow permafrost on the plateau increased by approximately 1.155-1.575℃and the permafrost area decreased by approximately 0.34×10^(6)km^(2) from about 1.4×10^(6)km^(2) to 1.06×10^(6)km^(2) in the past decades.As indicated by simulated calculation results,the thickness of the NGH-bearing permafrost on the Qinghai-Tibet Plateau has decreased by 29-39 m in the past 50 years,with the equivalent of(1.69-2.27)×10^(10)-(1.12-1.51)×10^(12)m^(3) of methane(CH_(4))being released due to NGHs dissociation.It is predicted that the thickness of the NGH-bearing permafrost will decrease by 23 m and 27 m,and dissociated and released NGHs will be the equivalent of(1.34-88.8)×10^(10)m^(3) and(1.57-104)×10^(10)m^(3)of CH_(4),respectively by 2030 and 2050.Considering the positive feedback mechanism of NGHs on global warming and the fact that CH_(4) has a higher greenhouse effect than carbon dioxide,the NGHs in the permafrost on the Qinghai-Tibet Plateau will emit more CH_(4) into the atmosphere,which is an important trend of NGHs under the background of global warming.Therefore,the NGHs are destructive as a time bomb and may lead to a waste of efforts that mankind has made in carbon emission reduction and carbon neutrality.Accordingly,this study suggests that human beings should make more efforts to conduct the exploration and exploitation of the NGHs in the permafrost of the Qinghai-Tibet Plateau,accelerate research on the techniques and equipment for NGHs extraction,storage,and transportation,and exploit the permafrost-associated NGHs while thawing them.The purpose is to reduce carbon emissions into the atmosphere and mitigate the atmospheric greenhouse effect,thus contributing to the global goal of peak carbon dioxide emissions and carbon neutrality.
基金supported by the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-DQC026).
文摘Due to the great influences of both climate warming and human activities,permafrost on the Qinghai-Xizang Plateau(QXP) has been undergoing considerable degradation.Continuous degradation of plateau permafrost dramatically modifies the regional water cycle and hydrological processes,affecting the hydrogeological conditions,and ground hydrothermal status in cold regions.Permafrost thawing impacts the ecological environment,engineering facilities,and carbon storage functions,releasing some major greenhouse gases and exacerbating climate change.Despite the utilization of advanced research methodologies to investigate the changing hydrological processes and the corresponding influencing factors in permafrost regions,there still exist knowledge gaps in multivariate data,quantitative analysis of permafrost degradation's impact on various water bodies,and systematic hydrological modeling on the QXP.This review summarizes the main research methods in permafrost hydrology and elaborates on the impacts of permafrost degradation on regional precipitation distribution patterns,changes in surface runoff,expansion of thermokarst lakes/ponds,and groundwater dynamics on the QXP.Then,we discuss the current inadequacies and future research priorities,including multiple methods,observation data,and spatial and temporal scales,to provide a reference for a comprehensive analysis of the hydrological and environmental effects of permafrost degradation on the QXP under a warming climate.
基金This study was supported by the CEODE Director Fund Project[grant number Y2ZZ05101B]Chinese Ministry of Science and Technology[grant numbers 2010CB951403 and 2011AA120403]and the National Natural Science Foundation of China[grant numbers 41001042 and 41201447].
文摘The permafrost in Qinghai-Tibet Plateau(QTP)has long been the focus of many researchers.In this study,we first use the method that integrates synthetic aperture radar(SAR)intensity and phase information to monitor permafrost environment in the Beiluhe Region,using time series advanced SAR images.The backscattering coefficients(σ^(0))and deformation were extracted for the main features,and the influences of meteorological conditions to them were also quantified.The results show that both the change inσ^(0)and surface deformation are closely related to the active layer,and the deformation is also affected by the permafrost table.First,over meadow and sparse vegetation regions,σ^(0)rose about 6.9 and 4 dB from the freezing to thawing period,respectively,which can be mainly attributed to the thaw of the active layer and increased precipitation.Second,seasonal deformation,derived from the freeze-thaw cycle of the active layer,was characteristic of frost heave and thaw settlement and exhibited a negative correlation with air temperature.Its magnitude was larger than 1 cm in a seasonal cycle.Last,significant secular settlement was observed,with rates ranging from-16 to 2 mm/a,and it was primarily due to the thaw of the permafrost table caused by climate warming.
文摘Numerical simulation indicates that the future thermal regime of permafrost on Qinghai-Xizang Plateau will change as the air temperature continuously rises at 0.04℃/a. The calculated results show that when Ts are 0, -0.5, -1.5, -2.5, -3.5 and - 4.5℃ under equilibium between climate and permafrost thermal regime, the mean annual temperatures at the depth of 14 m correspondingly equal to -0.11, -0.59, -1.52, -2.45, -3.21 and -4.32℃, and the permafrost thicknesses respectively equal to 16.8, 29.0, 54.1, 79.4, 112.1 and 131.0m. 50 years later, the temperatures at the depth of 14m will rises to 0.0, 0.0, -0.36, -1.23, -2.16, -3.06℃ under the given condition. When TS is lower than -1.1℃, the permafrost will respectively change from initial 2.0, 1.8, 1.6, 1.4m to 2.2, 2.0, 1.8, 1.6m for TS=-1.5, -2.5. - 3.5 and -4.5℃. If TS is higher than - 1.1℃, the frozen ground will change from the attachment type of frozen ground into the detachment type of frozen ground. Therefore, if future air temperature rises at 0.04℃ a or lower, the decrease area of the permafrost on Qinghai-Xizang Plateau may not be over 30℃. The areas includes those changing from the attachment of frozen ground into the detachment of frozen ground. If the area of detachment of frozen ground is not included, the decrease area may only be 3℃ within 50 a.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.30270255 and No.90511003)the"Hundred Talents"Project of the Chinese Academy of Sciences under the leadership of Wang Genxuthe State Key Project(973)(Grant No.2003CB415201).
文摘Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angles of grassland coverage and biological production the variation characteristics of high-cold eco- systems in different representative regions and different geomorphologic units under different climatic conditions were quantitatively assessed. In the future, adopting effective measures to protect permafrost is of vital importance to maintaining the stability of permafrost engineering and alpine cold eco- systems in the plateau.
基金Project supported by the National Climbing Project and Chinese Academy of Sciences (KZ951-A1-204).
文摘During the period from 25 to 17 Ma BP, when the second plateau uplifting, i.e. the second phase of the Himalaya movement, occurred, the Qinghai-Xizang Plateau reached an altitude high enough to chbge the situation of the general circulation. Such an effect of the plateau on the atmospheric circulation was accompanied by the warrning of the tropical ocean, the enhancement of the cross equatorial current, the enlargement of the marginal sea basins in the east-southeastern Asia, the westward extending of the Asian continent and the regression of the Paratethys Sea. As a result, the thermal difference was enlarged, and the air currents were enhanced between continents and oceans; finally the Asian monsoon system, mainly the summer monsoon, was initiated. The former planet wind system was then substituted by the monsoon system, and this caused the important environmental changes, such as the large shrinkage of the dry steppe in Central Asia, and the extension of the humid forest zone in East Asia. Thme changes have been dated at 21.8 Ma BP on the Lingxia profile in the northeastern border of the Tibet Plateau, when the savanna was transformed into the forest.