On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests o...On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests of AC16 asphalt mixtures were conducted to validate this new developed model. Parameters of new developed model were obtained by a nonlinear regression analysis of test data, and then permanent strains and flow number of each mixture were calculated. The experimental results prove that the new developed model can well describe three phases permanent deformation of asphalt mixture under repeated load and it can be used for pavement mechanical analysis and rutting prediction.展开更多
The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and...The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and lab-mixed duplicates. A new "mix-confined" test is developed and four new parameters for this test are proposed. Correlation coefficients with rut depths and coefficients of variation (sensitivity) are compared between the four new and two existing parameters. Some parameters are recommended to be used for the newly developed test. The results show that, newly developed test can capture the changes of permanent deformation of asphalt mixtures. Only one new parameter (D1 of Stephen Price model) and one existing parameter (flow number, Fn ) have strong correlations with rut depths of asphalt pavements (R2 greater than 0.7) and have relative small sensitivity (coefficient of variation, COV, less than 30%). For polymer modified asphalt mixtures, the parameter D1 rather than Fn should be used. These findings can be used to check the permanent deformation of asphalt mixture during the mix design.展开更多
In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen g...In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen generation procedure considering aggregate gradation and irregular shape is developed based on the probability theory and the Monte Carlo method. The virtual rutting test is then conducted based on the generated digital specimen. In addition, on the basis of the time-temperature superposition (TTS) principle, a calculation method is used to reduce the computation time of the virtual rutting test. The simulation results are compared with the laboratory measurements. The results show that the calculation method based on the TFS principle in the discrete element (DE) viscoelastic model can significantly reduce the computation time. The deformation law of asphalt mixtures in the virtual rutting test is similar to the laboratory measurements, and the deformation and the dynamic stability of the virtual rutting test are slightly greater than the laboratory measurements. The two-dimensional virtual rutting test can predict the permanent deformation performance of asphalt mixtures.展开更多
Rutting or permanent deformation is one of the major distress modes of hot mix asphalt in the field. Triaxial cycle compression testing (TCCT) is a standardized and scientifically accepted test method to address thi...Rutting or permanent deformation is one of the major distress modes of hot mix asphalt in the field. Triaxial cycle compression testing (TCCT) is a standardized and scientifically accepted test method to address this distress mode in the lab and to characterize the resistance to permanent deformation. In most labs and according to EN 12697-25, standard TGCTs are carried out with cyclic axial loading and a constant confining pressure. In road pavements on the other hand, dynamic traffic loading due to passing wheels leads to cyclic confining pressure. In order to bring the TCCT closer to reality, the radial reaction and its phase lag to axial loading in standard TCCTs are analyzed and an enhanced TCCT with cyclic confining pressure is introduced. The cyclic confining pressure takes into account the viscoelastic material response by the radial phase lag to axial phase loading. In a subsequent test program, TCCTs with different confining pressure amplitudes were carried out on two hot mix asphalts. Results from standard and enhanced TCCTs were analyzed, compared and discussed. It is shown that the resistance to permanent deformation in- creases significantly when the viscoelastic material response is taken into account in the TCCT by introducing cyclic confining pressure.展开更多
The series-wound dashpot of the Burgers model is modified by introducing the strain hardening parameter, and the new model is considered as a combination of the modified dashpot and the Van Der Poel model. The cyclica...The series-wound dashpot of the Burgers model is modified by introducing the strain hardening parameter, and the new model is considered as a combination of the modified dashpot and the Van Der Poel model. The cyclical pulse load consisting of a haversine load time and a rest period is adopted to simulate the actual vehicle load, and the permanent strain model under the repeated load is derived from the rheological and viscoelastic theories. Subsequently, the model is validated by the results of uniaxial repeated load permanent deformation tests of three asphalt mixtures. It is indicated that the proportion of residual viscoelastic strain to permanent strain decreases gradually with the load cycles, and only accounts for 2% to 3% during most of the loading period. If the rest period is long, the residual viscoelastic strain is little. The rest period of the actual vehicle load may be long enough, so the residual viscoelasticity can be ignored and the simplified model can be obtained. The proposed model can well describe the permanent deformation of asphalt mixtures under repeated load.展开更多
To predict correctly the rut depths in asphalt pavements,a new nonlinear viscoelastic-elastoplastic constitutive model of permanent deformation in asphalt pave-ments is presented. The model combines a generalized Maxw...To predict correctly the rut depths in asphalt pavements,a new nonlinear viscoelastic-elastoplastic constitutive model of permanent deformation in asphalt pave-ments is presented. The model combines a generalized Maxwell model with an elasto-plastic one. Then from the creep theory,the linear and nonlinear constitutive equations of the generalized Maxwell model are obtained. From the nonlinear finite element method for the rutting of the asphalt pavement,the rut depths of 4 asphalt-aggregate mixtures are obtained. And the results are compared with the ones from the finite element method by SHRP and the experiments by SWK/UN. The results in this paper are better than the ones by SHRP,and agree with the ones of the experiment by SWK/UN. This shows that the nonlinear viscoelastic-elastoplastic constitutive model,which is presented in this paper for the rutting of the asphalt pavement,is effective. The properties,such as nonlinear elastic-ity,plasticity,viscoelasticity and nonlinear viscoelasticity,which affect the rutting of an asphalt pavement,can be shown in the model. And the characteristics of the permanent deformation of the asphalt pavement can be presented entirely in the model.展开更多
基金Funded by the National Natural Science Foundation of China (No.50878054)
文摘On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests of AC16 asphalt mixtures were conducted to validate this new developed model. Parameters of new developed model were obtained by a nonlinear regression analysis of test data, and then permanent strains and flow number of each mixture were calculated. The experimental results prove that the new developed model can well describe three phases permanent deformation of asphalt mixture under repeated load and it can be used for pavement mechanical analysis and rutting prediction.
基金Project(08Y038) supported by Jiangsu Transportation Engineering Construction Bureau,China
文摘The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and lab-mixed duplicates. A new "mix-confined" test is developed and four new parameters for this test are proposed. Correlation coefficients with rut depths and coefficients of variation (sensitivity) are compared between the four new and two existing parameters. Some parameters are recommended to be used for the newly developed test. The results show that, newly developed test can capture the changes of permanent deformation of asphalt mixtures. Only one new parameter (D1 of Stephen Price model) and one existing parameter (flow number, Fn ) have strong correlations with rut depths of asphalt pavements (R2 greater than 0.7) and have relative small sensitivity (coefficient of variation, COV, less than 30%). For polymer modified asphalt mixtures, the parameter D1 rather than Fn should be used. These findings can be used to check the permanent deformation of asphalt mixture during the mix design.
基金The National Natural Science Foundation of China(No.51108081)
文摘In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen generation procedure considering aggregate gradation and irregular shape is developed based on the probability theory and the Monte Carlo method. The virtual rutting test is then conducted based on the generated digital specimen. In addition, on the basis of the time-temperature superposition (TTS) principle, a calculation method is used to reduce the computation time of the virtual rutting test. The simulation results are compared with the laboratory measurements. The results show that the calculation method based on the TFS principle in the discrete element (DE) viscoelastic model can significantly reduce the computation time. The deformation law of asphalt mixtures in the virtual rutting test is similar to the laboratory measurements, and the deformation and the dynamic stability of the virtual rutting test are slightly greater than the laboratory measurements. The two-dimensional virtual rutting test can predict the permanent deformation performance of asphalt mixtures.
文摘Rutting or permanent deformation is one of the major distress modes of hot mix asphalt in the field. Triaxial cycle compression testing (TCCT) is a standardized and scientifically accepted test method to address this distress mode in the lab and to characterize the resistance to permanent deformation. In most labs and according to EN 12697-25, standard TGCTs are carried out with cyclic axial loading and a constant confining pressure. In road pavements on the other hand, dynamic traffic loading due to passing wheels leads to cyclic confining pressure. In order to bring the TCCT closer to reality, the radial reaction and its phase lag to axial loading in standard TCCTs are analyzed and an enhanced TCCT with cyclic confining pressure is introduced. The cyclic confining pressure takes into account the viscoelastic material response by the radial phase lag to axial phase loading. In a subsequent test program, TCCTs with different confining pressure amplitudes were carried out on two hot mix asphalts. Results from standard and enhanced TCCTs were analyzed, compared and discussed. It is shown that the resistance to permanent deformation in- creases significantly when the viscoelastic material response is taken into account in the TCCT by introducing cyclic confining pressure.
基金The National Natural Science Foundation of China(No50608006)Program for New Century Excellent Talents in University(NoNCET-07-0120)
文摘The series-wound dashpot of the Burgers model is modified by introducing the strain hardening parameter, and the new model is considered as a combination of the modified dashpot and the Van Der Poel model. The cyclical pulse load consisting of a haversine load time and a rest period is adopted to simulate the actual vehicle load, and the permanent strain model under the repeated load is derived from the rheological and viscoelastic theories. Subsequently, the model is validated by the results of uniaxial repeated load permanent deformation tests of three asphalt mixtures. It is indicated that the proportion of residual viscoelastic strain to permanent strain decreases gradually with the load cycles, and only accounts for 2% to 3% during most of the loading period. If the rest period is long, the residual viscoelastic strain is little. The rest period of the actual vehicle load may be long enough, so the residual viscoelasticity can be ignored and the simplified model can be obtained. The proposed model can well describe the permanent deformation of asphalt mixtures under repeated load.
文摘To predict correctly the rut depths in asphalt pavements,a new nonlinear viscoelastic-elastoplastic constitutive model of permanent deformation in asphalt pave-ments is presented. The model combines a generalized Maxwell model with an elasto-plastic one. Then from the creep theory,the linear and nonlinear constitutive equations of the generalized Maxwell model are obtained. From the nonlinear finite element method for the rutting of the asphalt pavement,the rut depths of 4 asphalt-aggregate mixtures are obtained. And the results are compared with the ones from the finite element method by SHRP and the experiments by SWK/UN. The results in this paper are better than the ones by SHRP,and agree with the ones of the experiment by SWK/UN. This shows that the nonlinear viscoelastic-elastoplastic constitutive model,which is presented in this paper for the rutting of the asphalt pavement,is effective. The properties,such as nonlinear elastic-ity,plasticity,viscoelasticity and nonlinear viscoelasticity,which affect the rutting of an asphalt pavement,can be shown in the model. And the characteristics of the permanent deformation of the asphalt pavement can be presented entirely in the model.