In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. M...In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.展开更多
With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s...With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.展开更多
The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is h...The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.展开更多
With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles e...With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.展开更多
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be...In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.展开更多
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage...This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.展开更多
This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based o...This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with perman...In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.展开更多
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper...This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.展开更多
In this paper,a new auxiliary teeth structure is proposed for fault-tolerant permanent magnet(PM)generators,which can reduce the short-circuit currents.Firstly,the short-circuit current and the phase to phase isolatio...In this paper,a new auxiliary teeth structure is proposed for fault-tolerant permanent magnet(PM)generators,which can reduce the short-circuit currents.Firstly,the short-circuit current and the phase to phase isolation of the fault-tolerant generator are analyzed briefly.Secondly,the auxiliary teeth structure is optimized to improve fault-tolerant capability.Then,the PM generators with different stator structures are compared to evaluate the proposed auxiliary teeth structure.Four critical generator parameters are investigated,i.e.back-electromotive forces,short-circuit currents,stator magneto motive force(MMF)harmonics,and torque performances.The results show that the proposed structure has better fault-tolerant capability than the conventional two-layer windings.Moreover,the stator MMF harmonics can be suppressed.Furthermore,the cogging torque and torque ripple can be suppressed by adopting the proposed structure.Finally,the simulated results are given to validate the theoretical analysis.展开更多
The three-dimensional magnetic field of a permanent permanent (PM) disc-type generator is analyzed by the scalar potential method. In the analysis the permanent magnets are taken as magnetic charges. Hexahedron elemen...The three-dimensional magnetic field of a permanent permanent (PM) disc-type generator is analyzed by the scalar potential method. In the analysis the permanent magnets are taken as magnetic charges. Hexahedron element meshes are automatically generated by a prc-proccssing program developed by the authors. The flux densily is computed by a 3D scalar potential method program. Based on the linite elcment analysis the induced emf, current, armaturc reaction effects and electromagnetic torque of the disc machine are all calculated.展开更多
This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonline...This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.展开更多
基金supported by the Major Program of National Natural Science Foundation of China(No.U2166601)the General Program of National Natural Science Foundation of China(No.52077196).
文摘In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.
基金supported in part by the“Chunhui Plan”Collaborative Research Project of Chinese Ministry of Education under Grant HZKY20220604by the National Natural Science Foundation of China under Grant 52107007。
文摘With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.
文摘The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.
基金Supported by National Natural Science Foundation of China(Grant No.51507096)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014JL035)
文摘With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.
基金Supported by the National Natural Science Foundation of China(No.51577124)Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC32100)
文摘In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
文摘This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.
文摘This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
基金Supported by the National Natural Science Foundation of China(No.41076054)Special Foundation for State Oceanic Administration of China(No.GHME2011GD02)Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1416)
文摘In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.
基金Project supported by the CMEP-TASSILI Project(Grant No.14MDU920)
文摘This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.
基金supported by the Key Research and Development Program of Jiangsu Province(BE2018107)by the Natural Science Foundation of Jiangsu Province(BK20191225).
文摘In this paper,a new auxiliary teeth structure is proposed for fault-tolerant permanent magnet(PM)generators,which can reduce the short-circuit currents.Firstly,the short-circuit current and the phase to phase isolation of the fault-tolerant generator are analyzed briefly.Secondly,the auxiliary teeth structure is optimized to improve fault-tolerant capability.Then,the PM generators with different stator structures are compared to evaluate the proposed auxiliary teeth structure.Four critical generator parameters are investigated,i.e.back-electromotive forces,short-circuit currents,stator magneto motive force(MMF)harmonics,and torque performances.The results show that the proposed structure has better fault-tolerant capability than the conventional two-layer windings.Moreover,the stator MMF harmonics can be suppressed.Furthermore,the cogging torque and torque ripple can be suppressed by adopting the proposed structure.Finally,the simulated results are given to validate the theoretical analysis.
文摘The three-dimensional magnetic field of a permanent permanent (PM) disc-type generator is analyzed by the scalar potential method. In the analysis the permanent magnets are taken as magnetic charges. Hexahedron element meshes are automatically generated by a prc-proccssing program developed by the authors. The flux densily is computed by a 3D scalar potential method program. Based on the linite elcment analysis the induced emf, current, armaturc reaction effects and electromagnetic torque of the disc machine are all calculated.
文摘This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.