In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r...In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.展开更多
Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel ...Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.展开更多
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma...In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.展开更多
A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless s...A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.展开更多
Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are e...Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D e...In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite ele...A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite element analysis (FEA) of magnetic field is conducted to accurately calculate major motor parameters. Equivalent electrical circuit is used to predict the drive's steady-state characteristics, and a phase variable model is applied to predict the dynamic performance. Preliminary experiment with a prototype has been made to verify the theoretical analysis and the HTS-PM synchronous driving technology.展开更多
The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coi...The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coil temperature reaches an allowable temperature with heat analysis was applied to a magnetic circuit design.Changing optimal current density is verified whenever the design parameters of the motor are altered.The design parameters of the motor were applied to thrust calculation.In this way,the optimal model,which is a reversal of the existing design method,is deduced.The results were compared with the experimental data to verify their validity.When the convection heat transfer coefficient is applied to other models,the results of the analysis and test values show good concordance.The method proposed has some limitations.展开更多
The detent force of a permanent magnet linear synchronous motor (PMLSM) is analyzed and the corresponding optimization methods are presented to reduce it. The detent force, which is divided into two components, i.e....The detent force of a permanent magnet linear synchronous motor (PMLSM) is analyzed and the corresponding optimization methods are presented to reduce it. The detent force, which is divided into two components, i.e. resulting from the end effect and resulting from the slotting effect, can be analyzed respectively by the finite element method (FEM). To reduce the detent force arising from the end effect, several optimal design techniques are utilized, namely, adopting the suitable length and end shape of the primary armature. The detent force resulting from the slotting effect is reduced by means of skewing and adjusting the width of the magnets mounted on the secondary armature, and adopting the fractional slots of the primary armature. The validity of the analytical detent force predictions and the effectiveness of the detent force reduction techniques are verified by the experimental measurements.展开更多
For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a bal...For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.展开更多
In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end e...In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end effect and the unbalance of current. The analytic method can be used for the analysis of dynamic and static characteristics of PMLSM.展开更多
A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven ope...A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results.展开更多
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme...A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.展开更多
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app...To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.展开更多
文摘In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.
基金supported in part by the National Natural Science Foundation of China under Grant 52077123 and 51737008in part by the Natural Science Foundation of Shandong Province of China for Outstanding Young Scholars,under Grant ZR2021YQ35。
文摘Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.
基金supported in part by National Natural Science Foundation of China(52177194)in part by State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ012016006)+1 种基金in part by Key Research and Development Project of ShaanXi Province(2019GY-060)in part by Key Laboratory of Industrial Automation in ShaanXi Province(SLGPT2019KF01-12)(。
文摘In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.
基金Project (No. 50607016) supported by the National Natural ScienceFoundation of China
文摘A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.
基金This work has been partly supported in part by National Natural Science Foundation of China under Grants 51877093 and 51707079in part by the National Key Research and Development Program of China under Grant YS2018YFGH000200,in part by the Key Technical Innovation Program of Hubei Province under Grant 2019AAA026.
文摘Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
文摘In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
文摘A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite element analysis (FEA) of magnetic field is conducted to accurately calculate major motor parameters. Equivalent electrical circuit is used to predict the drive's steady-state characteristics, and a phase variable model is applied to predict the dynamic performance. Preliminary experiment with a prototype has been made to verify the theoretical analysis and the HTS-PM synchronous driving technology.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsChangwon National University in 2009-2010
文摘The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coil temperature reaches an allowable temperature with heat analysis was applied to a magnetic circuit design.Changing optimal current density is verified whenever the design parameters of the motor are altered.The design parameters of the motor were applied to thrust calculation.In this way,the optimal model,which is a reversal of the existing design method,is deduced.The results were compared with the experimental data to verify their validity.When the convection heat transfer coefficient is applied to other models,the results of the analysis and test values show good concordance.The method proposed has some limitations.
基金supported by the National Natural Science Foundation of China (Grant No.60474021)
文摘The detent force of a permanent magnet linear synchronous motor (PMLSM) is analyzed and the corresponding optimization methods are presented to reduce it. The detent force, which is divided into two components, i.e. resulting from the end effect and resulting from the slotting effect, can be analyzed respectively by the finite element method (FEM). To reduce the detent force arising from the end effect, several optimal design techniques are utilized, namely, adopting the suitable length and end shape of the primary armature. The detent force resulting from the slotting effect is reduced by means of skewing and adjusting the width of the magnets mounted on the secondary armature, and adopting the fractional slots of the primary armature. The validity of the analytical detent force predictions and the effectiveness of the detent force reduction techniques are verified by the experimental measurements.
基金supported in part by the National Natural Science Foundation of China under Grant 52022040in part by the Postgraduate Research&Practice Innovation Program of NUAA。
文摘For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.
文摘In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end effect and the unbalance of current. The analytic method can be used for the analysis of dynamic and static characteristics of PMLSM.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50775226)the Chongqing Natural Science Foundation (Grant No. CSTC, 2008BB3308)the Innovation Training Foundation of Chongqing University (Grant No. CDCX004)
文摘A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results.
基金Project (60835004) supported by the National Natural Science Foundation of China
文摘A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.
基金co-supported by the National Natural Science Foundation of China(No.52177028)in part by the Aeronautical Science Foundation of China(No.201907051002)。
文摘To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.