期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
1
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Analysis and Design of Surface Permanent Magnet Synchronous Motor and Generator 被引量:7
2
作者 Chengyuan He Thomas Wu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第1期94-100,共7页
This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based o... This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design. 展开更多
关键词 initeelement analysis FABRICATION high-efficiency mathematic model surface permanent magnet synchronous motor or generator.
下载PDF
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system 被引量:1
3
作者 Manal Messadi Adel Mellit +1 位作者 Karim Kemih Malek Ghanes 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期177-183,共7页
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper... This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. 展开更多
关键词 permanent magnet synchronous generator chaotic system genetic algorithm predictive control
下载PDF
Prediction of the Inductance in a Synchronous Linear Permanent Magnet Generator
4
作者 Boel Ekergard Rafael Waters Mats Leijon 《Journal of Electromagnetic Analysis and Applications》 2011年第5期155-159,共5页
This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctanc... This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator. 展开更多
关键词 Wave Power synchronous Linear permanent Magnet Generator Varying Inductance ABC of Frame Reference
下载PDF
Coordinated Robust PID-based Damping Control of Permanent Magnet Synchronous Generators for Low-frequency Oscillations Considering Power System Operational Uncertainties
5
作者 Rehan Sadiq Zhen Wang +2 位作者 Chi Yung Chung Deqiang Gan Cunzhi Tong 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1042-1051,共10页
In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. M... In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios. 展开更多
关键词 permanent magnet synchronous generator(PMSG) low-frequency oscillation(LFO) proportional-integralderivative(PID) robust control H-infinity static output feed-back control linear matrix inequality(LMI)
原文传递
Current Loop Disturbance Suppression for Dual Three Phase Permanent Magnet Synchronous Generators Based on Modified Linear Active Disturbance Rejection Control
6
作者 Dezhi Xu Hu Yao +1 位作者 Yang He Wenxiang Zhao 《Chinese Journal of Electrical Engineering》 EI CSCD 2024年第1期101-113,共13页
A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d a... A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective. 展开更多
关键词 Dual three-phase permanent magnet synchronous generator current loop decoupling control harmonic suppression linear active disturbance rejection control
原文传递
Integrated Equivalent Model of Permanent Magnet Synchronous Generator Based Wind Turbine for Large-scale Offshore Wind Farm Simulation 被引量:2
7
作者 Ming Zou Yan Wang +3 位作者 Chengyong Zhao Jianzhong Xu Xiaojiang Guo Xu Sun 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1415-1426,共12页
The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence... The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given. 展开更多
关键词 Offshore wind farm(OWF) electro-magnetic transient(EMT) integrated equivalent modelling permanent magnet synchronous generator(PMSG)based wind turbine(WT)
原文传递
Wide Speed Range Permanent Magnet Synchronous Generator Design for a DC Power System 被引量:3
8
作者 Dongmin Miao Yves Mollet +1 位作者 Johan Gyselinck Jianxin Shen 《Chinese Journal of Electrical Engineering》 CSCD 2017年第1期33-41,共9页
A wide speed range permanent magnet synchronous generator(PMSG)system is studied in this paper,including the PMSG design and comparative study on control strategies with a pulse width modulation(PWM)rectifier,the purp... A wide speed range permanent magnet synchronous generator(PMSG)system is studied in this paper,including the PMSG design and comparative study on control strategies with a pulse width modulation(PWM)rectifier,the purpose of which is to regulate the DC-link voltage.It is of great importance to study the foregoing DC power system based on the PMSG and PWM rectifier,where vector control(VC)can be implemented and the corresponding field-weakening strategy can be realized by injecting a field-weakening current component without any auxiliary devices.Large machine inductance is desired in order to limit the short-circuit current and the loaded voltage drop.Different control strategies including VC,direct torque control(DTC)and direct voltage control(DVC)are studied and compared with both simulations and experiments. 展开更多
关键词 Wide speed range permanent magnet synchronous generator PWM rectifier vector control field-weakening control direct torque control direct voltage control
原文传递
Robust Variable-Pitch Control Design of PMSG Via Perturbation Observer 被引量:3
9
作者 Yilin Hu Yan Xie +2 位作者 Bo Li Yiqiang Jiang Fu Bao 《Energy Engineering》 EI 2021年第4期911-929,共19页
Wind turbine employs pitch angle control to maintain captured power at its rated value when the wind speed is higher than rated value.This work adopts a perturbation observer based sliding-mode control(POSMC)strategy ... Wind turbine employs pitch angle control to maintain captured power at its rated value when the wind speed is higher than rated value.This work adopts a perturbation observer based sliding-mode control(POSMC)strategy to realize robust variable-pitch control of permanent magnet synchronous generator(PMSG).POSMC combines system nonlinearities,parametric uncertainties,unmodelled dynamics,and time-varying external disturbances into a perturbation,which aims to estimate the perturbation via a perturbation observer without an accurate system model.Subsequently,sliding mode control(SMC)is designed to completely compensate perturbation estimation in real-time for the sake of achieving a global consistent control performance and improving system robustness under complicated environments.Simulation results indicate that,compared with vector control(VC),feedback linearization control(FLC),and nonlinear adaptive control(NAC),POSMC has the best control performance in ramp wind and random wind and the highest robustness in terms of parameter uncertainty.Specially,the integral absolute error index of!m of POSMC is only 11.69%,12.10%and 15.14%of that of VC,FLC and NAC in random wind speed. 展开更多
关键词 Variable-pitch control permanent magnet synchronous generator perturbation observer
下载PDF
Control Strategy of Wind Turbine Based on Permanent Magnet Synchronous Generator and Energy Storage for Stand-Alone Systems 被引量:2
10
作者 Fujin Deng Dong Liu +1 位作者 Zhe Chen Peng Su 《Chinese Journal of Electrical Engineering》 CSCD 2017年第1期51-62,共12页
This paper investigates a variable speed wind turbine based on permanent magnet synchronous generator and a full-scale power converter in a stand-alone system.An energy storage system(ESS)including battery and fuel ce... This paper investigates a variable speed wind turbine based on permanent magnet synchronous generator and a full-scale power converter in a stand-alone system.An energy storage system(ESS)including battery and fuel cell-electrolyzer combination is connected to the DC link of the full-scale power converter through the power electronics interface.Wind is the primary power source of the system,the battery and FC-electrolyzer combination is used as a backup and a long-term storage system to provide or absorb power in the stand-alone system,respectively.In this paper,a control strategy is proposed for the operation of this variable speed wind turbine in a stand-alone system,where the generator-side converter and the ESS operate together to meet the demand of the loads.This control strategy is competent for supporting the variation of the loads or wind speed and limiting the DC-link voltage of the full-scale power converter in a small range.A simulation model of a variable speed wind turbine in a stand-alone system is developed using the simulation tool of PSCAD/EMTDC.The dynamic performance of the stand-alone wind turbine system and the proposed control strategy is assessed and emphasized with the simulation results. 展开更多
关键词 Variable speed wind turbine(VSWT) permanent magnet synchronous generator(PMSG) stand-alone system energy storage system(ESS).
原文传递
Comparative Performance of Fixed-Speed and Variable-Speed Wind Turbine Generator Systems 被引量:2
11
作者 Mohamed Mansour Mohamed Nejib Mansouri Mohamed Faouzi Mimouni 《Journal of Mechanics Engineering and Automation》 2011年第1期74-81,共8页
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t... In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation. 展开更多
关键词 Fixed speed wind generator variable speed wind generator squirrel cage induction generator permanent magnet synchronous generator (PMSG) maximum power point tracking (MPPT) pitch control.
下载PDF
Intensification of Power Quality Using PMSG and Cascaded Multi Cell Trans-Z-Source Inverter 被引量:1
12
作者 E. Rajendran Dr. C. Kumar Dr. P. Suresh 《Circuits and Systems》 2016年第11期3778-3793,共17页
This script depicts the power quality intensification of Wind Energy Transfer System (WETS) using Permanent Magnet Synchronous Generator (PMSG) and Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI). The PMSG knock... This script depicts the power quality intensification of Wind Energy Transfer System (WETS) using Permanent Magnet Synchronous Generator (PMSG) and Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI). The PMSG knocks the induction generator and earlier generators, because of their stimulating performances without taking the frame power. The Trans-Z-Source Inverter with one transformer and one capacitor is connected newly. To increase the boosting ratio gratuity a cascaded impression is proposed with adopting multi-winding transformer which provides an option for this manuscript to use coupled inductor as an alternative of multi-winding transformer and remains the matching voltage gain as cascaded multi cell trans-Z- source inverter. Accordingly the parallel capacitances are also balancing the voltage gain. The parallel correlation of the method is essentially to trim down the voltage stresses and to improve the input current gain of the inverter. By using MALAB Simulation, harmonics can be reduced up to 1.32% and also DC side can be boosted up our required level 200 - 1000 V achievable. The new hardware setup results demonstrate to facilitate the multi cell Trans Z-source inverter. This can be generated high-voltage gain [50 V - 1000 V] and also be credible. Moreover, the level of currents, voltages and Harmonics on the machinery is low. 展开更多
关键词 Neuro Fuzzy System (NFS) permanent Magnet synchronous Generator (PMSG) Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI) Wind Energy Transfer System (WETS)
下载PDF
Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts
13
作者 He HAO Wei-zhong FEI +2 位作者 Dong-min MIAO Meng-jia JIN Jian-xin SHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第8期814-824,共11页
In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet s... In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis(FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque. 展开更多
关键词 permanent magnet synchronous generator(PMSG) Radial ventilating air duct Torque ripple Step skewing Magnet shape optimization Finite element analysis Wind power
原文传递
Control-Based Stabilization of DC Microgrid for More Electric Aircraft
14
作者 YANG Jiajun BUTICCHI Giampaolo +3 位作者 GU Chunyang WHEELER Pat ZHANG He GERADA Chris 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期737-746,共10页
Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing num... Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing number of on-board power electronic based devices,the distribution system of the aircraft can be regarded as an onboard microgrid.As it is known that the load power electronic converters can exhibit constant power load(CPL)characteristics and reduce the system stability,it is necessary to accurately predict and enhance the system stability in designing process.This paper firstly analyzes the stability of an on-board DC microgrid with the presence of CPL.Then,discusses the reasons behind instability and proposes a control strategy to enhance system stability.Finally,the simulation results are worked out to validate the analysis and the effect of the proposed control strategy. 展开更多
关键词 DC microgrid stability analysis impedance model constant power load more electric aircraft dual active bridge converter permanent magnet synchronous generator
下载PDF
A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems
15
作者 Xing-Peng Li Wen-Lu Fu +2 位作者 Qing-Jun Shi Jian-Bing Xu Quan-Yuan Jiang 《Journal of Electronic Science and Technology》 CAS 2013年第1期72-77,共6页
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste... Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms. 展开更多
关键词 Fuzzy logical control hill climbing search maximum power point tracking permanent magnet synchronous generator wind generation system.
下载PDF
A Novel Modified Fuzzy-predictive Control of Permanent Magnet Synchronous Generator Based Wind Energy Conversion System
16
作者 Ehsan Akbari Milad Samady Shadlu 《Chinese Journal of Electrical Engineering》 EI CSCD 2023年第4期107-121,共15页
A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high per... A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted. 展开更多
关键词 Maximum power point tracking(MPPT) wind energy conversion system(WECS) permanent magnet synchronous generator(PMSG) fuzzy logic control(FLC) model predictive control(MPC)
原文传递
Design and analysis of a novel hybrid cooling method of high-speed high-power permanent magnet assisted synchronous reluctance starter/generator in aviation applications
17
作者 Hong GUO Xu HE +4 位作者 Jinquan XU Wei TIAN Xiaofeng DING Laicai JU Dehong LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期285-302,共18页
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app... To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform. 展开更多
关键词 Air gap friction loss Oil spray cooling permanent magnet assisted synchronous reluctance starter/generator Thermal analysis Thermal network model
原文传递
Enhanced Atom Search Optimization Based Optimal Control Parameter Tunning of PMSG for MPPT
18
作者 Xin He Ping Wei +3 位作者 Xiaoyan Gong Xiangfei Meng Dong Shan Jiawei Zhu 《Energy Engineering》 EI 2022年第1期145-161,共17页
For the past few years,wind energy is the most popular non-traditional resource among renewable energy resources and it’s significant to make full use of wind energy to realize a high level of generating power.Moreov... For the past few years,wind energy is the most popular non-traditional resource among renewable energy resources and it’s significant to make full use of wind energy to realize a high level of generating power.Moreover,diverse maximum power point tracking(MPPT)methods have been designed for varying speed operation of wind energy conversion system(WECS)applications to obtain optimal power extraction.Hence,a novel and metaheuristic technique,named enhanced atom search optimization(EASO),is designed for a permanent magnet synchronous generator(PMSG)based WECS,which can be employed to track the maximum power point.One of the most promising benefits of this technique is powerful global search capability that leads to fast response and high-quality optimal solution.Besides,in contrast with other conventional meta-heuristic techniques,EASO is extremely not relying on the original solution,which can avoid sinking into a low-quality local maximum power point(LMPP)by realizing an appropriate trade-off between global exploration and local exploitation.At last,simulations employing two case studies through Matlab/Simulink validate the practicability and effectiveness of the proposed techniques for optimal proportional-integral-derivative(PID)control parameters tuning of PMSG based WECS under a variety of wind conditions. 展开更多
关键词 Enhanced atom search optimization permanent magnetic synchronous generator maximum power point tracking wind energy conversion system
下载PDF
Starting Control of Free Piston Stirling Linear Generator System Based on FOC
19
作者 Qiaoling Yang Kechun Zhang +2 位作者 Shenghui Guo Boliang Song Xiaoyu Zhang 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第2期195-200,共6页
Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear... Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation. 展开更多
关键词 Parameter setting Field orientation control Double closed loop permanent magnet synchronous linear generator
下载PDF
Enhancement of DC-Link Protection of PMSG Based Wind Turbine under Network Disturbance by Using New Buck Controller System
20
作者 Linda Sartika Atsushi Umemura +1 位作者 Rion Takahashi Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第4期171-179,共9页
Protection system for DC-link circuit of back-to-back converter of PMSG (Permanent Magnet Synchronous Generator) based wind turbine is essential part for the system to ride through a network fault in grid system. Vo... Protection system for DC-link circuit of back-to-back converter of PMSG (Permanent Magnet Synchronous Generator) based wind turbine is essential part for the system to ride through a network fault in grid system. Voltage on the DC-link circuit can be increased significantly due to power unbalance between stator side converter and grid side converter. Increase of DC-link circuit voltage can lead to a damage of IGBT of the converter and control system failure. In this paper performance enhancement of DC-link protection of PMSG based Wind turbine by using new control system of buck converter is proposed. The buck converter is used to control supplied voltage of a breaking resistor to dissipate energy from the wind generator during network disturbance. In order to investigate effectiveness of the proposed DC-link protection system, fault analysis is performed in the simulation study by using PSCAD/EMTDC software program. In addition, comparative analysis between the proposed protection system and the conventional protection system using DC chopper is also performed. 展开更多
关键词 Wind farm variable speed wind turbine permanent magnet synchronous generator buck controller.
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部