In order to address the future power generation needs for scientific exploration of the lunar permanently shadowed regions,this paper proposes a laser wireless power transfer(LWPT)system from a power source at the ill...In order to address the future power generation needs for scientific exploration of the lunar permanently shadowed regions,this paper proposes a laser wireless power transfer(LWPT)system from a power source at the illuminated rim of the crater to a photovoltaic laser receiver on a rover exploring inside the permanently shadowed region.To fill a gap between the conceptual design and an operational system,the required conditions were analyzed regarding the effects of beam alignment and shaping,wavelength-dependent conversion efficiency on the system level efficiency,and a ground-based prototype system was established.Electric–electric efficiency of 11.55%was measured at a ground transmission distance of 10 m.The study is complemented by discussing optimization analysis for subsequent research,can be more effective and employed in the future.展开更多
文摘In order to address the future power generation needs for scientific exploration of the lunar permanently shadowed regions,this paper proposes a laser wireless power transfer(LWPT)system from a power source at the illuminated rim of the crater to a photovoltaic laser receiver on a rover exploring inside the permanently shadowed region.To fill a gap between the conceptual design and an operational system,the required conditions were analyzed regarding the effects of beam alignment and shaping,wavelength-dependent conversion efficiency on the system level efficiency,and a ground-based prototype system was established.Electric–electric efficiency of 11.55%was measured at a ground transmission distance of 10 m.The study is complemented by discussing optimization analysis for subsequent research,can be more effective and employed in the future.