This paper presents an investigation of inverter fault-tolerant operation for a permanent magnet synchronous motor (PMSM) direct torque control (DTC) system under various inverter faults. The performance of a faul...This paper presents an investigation of inverter fault-tolerant operation for a permanent magnet synchronous motor (PMSM) direct torque control (DTC) system under various inverter faults. The performance of a faulty standard 6-switch inverter driven PMSM DTC system is analyzed. To avoid the loss or even disaster caused by the inverter faults, a topology-modified inverter with fault-tolerant capability is introduced, which is reconfigured as a 3-phase 4-switch inverter. The modeling of the 4-switch inverter is then analyzed and a novel DTC strategy with a unique nonlinear perpendicular flux observer and feedback compensation scheme is proposed for obtaining a continuous, disturbance-flee drive system. The simulation and experimental results demonstrate that the proposed inverter fault-tolerant PMSM DTC system is able to operate stably and continuously with acceptable static and pretty good dynamic performance.展开更多
In this paper, a new sensorless interior permanent magnet synchronous motor (IPMSM) drives method with extended Kalman filter (EKF) for speed, rotor position and load torque estimation is proposed. The direct torq...In this paper, a new sensorless interior permanent magnet synchronous motor (IPMSM) drives method with extended Kalman filter (EKF) for speed, rotor position and load torque estimation is proposed. The direct torque control (DTC) technique for permanem magnet synchronous motor (PMSM) is receiving increasing attention due to the important advantages of the low dependence on motor parameters when compared with other motor control techniques. The Kalman filter is an observer for linear and non-linear systems and is based on the stochastic intromission, in others words, noise. The PMSM is fed by an indirect power electronic converter which is controlled by a sliding mode technique. The simulation tests performed for different operating condi- tions have confirmed the robustness of the overall system; and it is shown that the sliding mode technique has successfully minimized the different harmonics introduced by the line converter.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50507017)the SRF for ROCS,SEM
文摘This paper presents an investigation of inverter fault-tolerant operation for a permanent magnet synchronous motor (PMSM) direct torque control (DTC) system under various inverter faults. The performance of a faulty standard 6-switch inverter driven PMSM DTC system is analyzed. To avoid the loss or even disaster caused by the inverter faults, a topology-modified inverter with fault-tolerant capability is introduced, which is reconfigured as a 3-phase 4-switch inverter. The modeling of the 4-switch inverter is then analyzed and a novel DTC strategy with a unique nonlinear perpendicular flux observer and feedback compensation scheme is proposed for obtaining a continuous, disturbance-flee drive system. The simulation and experimental results demonstrate that the proposed inverter fault-tolerant PMSM DTC system is able to operate stably and continuously with acceptable static and pretty good dynamic performance.
文摘In this paper, a new sensorless interior permanent magnet synchronous motor (IPMSM) drives method with extended Kalman filter (EKF) for speed, rotor position and load torque estimation is proposed. The direct torque control (DTC) technique for permanem magnet synchronous motor (PMSM) is receiving increasing attention due to the important advantages of the low dependence on motor parameters when compared with other motor control techniques. The Kalman filter is an observer for linear and non-linear systems and is based on the stochastic intromission, in others words, noise. The PMSM is fed by an indirect power electronic converter which is controlled by a sliding mode technique. The simulation tests performed for different operating condi- tions have confirmed the robustness of the overall system; and it is shown that the sliding mode technique has successfully minimized the different harmonics introduced by the line converter.