期刊文献+
共找到3,828篇文章
< 1 2 192 >
每页显示 20 50 100
Geological characteristics and models of fault-foldfracture body in deep tight sandstone of the second member of Upper Triassic Xujiahe Formation in Xinchang structural belt of Sichuan Basin,SW China 被引量:1
1
作者 LIU Junlong LIU Zhongqun +8 位作者 LIU Zhenfeng LIU Yali SHEN Baojian XIAO Kaihua BI Youyi WANG Xiaowen WANG Ail FAN Lingxiao LI Jitongl 《Petroleum Exploration and Development》 SCIE 2023年第3期603-614,共12页
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot... In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China. 展开更多
关键词 fault-fold-fracture body fracture control factor genetic characteristics geological model deep layer tight sandstone Xinchang structural belt Upper Triassic Xujiahe Formation Sichuan Basin
下载PDF
Pore-Throat Combination Types and Gas-Water Relative Permeability Responses of Tight Gas Sandstone Reservoirs in the Zizhou Area of East Ordos Basin, China 被引量:5
2
作者 LI Mi GUO Yinghai +2 位作者 LI Zhuangfu WANG Huaichang ZHANG Jingxia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期622-636,共15页
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat comb... With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity. 展开更多
关键词 tight gas sandstone pore-throat COMBINATION type THROAT characteristic GAS-WATER relative permeability Zizhou area ORDOS Basin
下载PDF
Experimental study of surfactant-enhanced spontaneous imbibition in fractured tight sandstone reservoirs: The effect of fracture distribution
3
作者 Kun Yang Fu-Yong Wang Jiu-Yu Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期370-381,共12页
Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In thi... Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In this study,based on high-pressure mercury injection and nuclear magnetic resonance experiments,the pore distribution of tight sandstone is described.The influence of fractures,core porosity and permeability,and surfactants on the spontaneous imbibition of tight sandstone are studied by physical fracturing,interfacial tension test,wettability test and imbibition experiments.The results show that:the pore radius of tight sandstone is concentrated in 0.01-1 mm.Fractures can effectively reduce the oil drop adsorption on the core surface,enhancing the imbibition recovery of the tight sandstone with an increase of about 10%.As the number of fractures increases,the number of oil droplets adsorbed on the core surface decrease and the imbibition rate increases.The imbibition recovery increases with the increase in pore connectivity,while the imbibition rate increases with the increases in core porosity and permeability.The surfactant can improve the core water wettability and reduce the oilwater interfacial tension,reducing the adsorption of oil droplets on the core surface,and improving the core imbibition recovery with an increase of about 15%.In a word,the existence of fractures and surfactants can enhance the pore connectivity of the reservoir,reduce the adsorption of oil droplets on the core surface,and improve the imbibition rate and recovery rate of the tight oil reservoir. 展开更多
关键词 tight sandstone IMBIBITION FRACTURE SURFACTANT
下载PDF
Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration
4
作者 Yong Zhao Xiqi Li +2 位作者 Lin Lei Ling Chen Zhiping Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2597-2610,共14页
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani... Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process. 展开更多
关键词 Low-frequency vibration Low-permeability sandstone Uranium migration permeability evolution mechanism Chemical reactive rate Optimum permeability
下载PDF
Computed X-ray Tomography Investigation of Porosity and Permeability of the Liujiagou Formation Sandstone Exposed to CO_(2)-Saturated Brine
5
作者 XUE Quan ZHANG Liwei +6 位作者 XU Liang Matthew MYERS Cameron WHITE MEI Kaiyuan WANG Hanwen LI Qi LI Xiaochun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期946-955,共10页
In order to improve CO_(2) capture,utilization and storage(CCUS) to solve carbon emission,sandstone from the Triassic Liujiagou Formation(LF) from the Ordos Basin in China was investigated using permeability tests and... In order to improve CO_(2) capture,utilization and storage(CCUS) to solve carbon emission,sandstone from the Triassic Liujiagou Formation(LF) from the Ordos Basin in China was investigated using permeability tests and computed X-ray tomography(CT) scanning.The presence of reactive minerals within the geological CO_(2) sequestration target storage formation can allow reaction with injected CO_(2),which changes the porosity and permeability of the LF beds,affecting storage effectiveness.To investigate the effect of chemical reactions on the pore structure and permeability of sandstone cores representing the LF CO_(2) storage,tests were conducted to analyze the changes in porosity and permeability of sandstone cores induced by CO_(2)-saturated brine at different reaction times(28-day maximum reaction period).Porosity and permeability of the sandstone increased after reaction with CO_(2)-saturated brine due to mineral dissolution.The sandstone exhibited an increase in porosity and permeability after 15 days of reaction with CO_(2)-saturated brine.Moreover,there was an increase in the volume of large pores in the sandstone after the 28-day period.The pore network of the sandstone was established through CT results,and the porosity calculated based on the obtained pore network was close to that measured in the test,demonstrating the feasibility to use CT to study the evolution of the microstructure of sandstone after long-time exposure to CO_(2)-saturated brine. 展开更多
关键词 CO_(2)capture-utilization-storage Triassic sandstone permeability porosity Ordos Basin
下载PDF
Influence of Acid Treatment on Pore Structure and Fractal Characterization of a Tight Sandstone:A Case Study from Wudun Sag,Dunhuang Basin
6
作者 GENG Weile WANG Jiandong +5 位作者 ZHANG Xuecai WANG Jun DONG Chenqiang ZHOU Guangqing HUANG Gun LI Lin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第2期562-572,共11页
In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.... In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation. 展开更多
关键词 pore structure acid treatment full pore size distribution fractal dimension tight sandstone
下载PDF
Tight sandstone gas accumulation mechanisms and sweet spot prediction, Triassic Xujiahe Formation, Sichuan Basin, China
7
作者 Lin Jiang Wen Zhao +3 位作者 Dong-Mei Bo Feng Hong Yan-Jie Gong Jia-Qing Hao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3301-3310,共10页
The prediction of continental tight sandstone gas sweet spots is an obstacle during tight sandstone gas exploration. In this work, the classic physical fluid charging experimental equipment is improved, the combinatio... The prediction of continental tight sandstone gas sweet spots is an obstacle during tight sandstone gas exploration. In this work, the classic physical fluid charging experimental equipment is improved, the combination of the gas migration and accumulation process with the pore network numerical simulation method is investigated, and application of the permeability/porosity ratio is proposed to predict the gas saturation and sweet spots of continental formations. The results show that (1) as the charging pressure increases, the permeability of the reservoir increases because more narrow pore throats are displaced in the percolation process;and (2) based on pore network numerical simulation and theoretical analysis, the natural gas migration and accumulation mechanisms are revealed. The gas saturation of tight sandstone rock is controlled by the gas charging pressure and dynamic percolation characteristics. (3) The ratio of permeability/porosity and fluid charging pressure is proposed to predict the gas saturation of the formation. The ratio is verified in a pilot and proven to be applicable and practical. This work highlights the tight sandstone gas migration and accumulation mechanisms and narrows the gap among microscale physical experiments, numerical simulation research, and field applications. 展开更多
关键词 tight sandstone gas Hydrocarbon migration and accumulation Physical experiment Numerical simulation
下载PDF
Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework
8
作者 Zhi-Qi Guo Xiao-Ying Qin Cai Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3428-3440,共13页
Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is ch... Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region. 展开更多
关键词 tight gas sandstone reservoirs Quantitative reservoir characterization Rock-physics-based framework Microfracture porosity Rock physics template
下载PDF
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
9
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 tight sandstone Integrated reservoir classification Principal component analysis Simulated annealing genetic algorithm Fuzzy cluster means
下载PDF
Tight Sandstone Image Augmentation for Image Identification Using Deep Learning
10
作者 Dongsheng Li Chunsheng Li +4 位作者 Kejia Zhang Tao Liu Fang Liu Jingsong Yin Mingyue Liao 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1209-1231,共23页
Intelligent identification of sandstone slice images using deep learning technology is the development trend of mineral identification,and accurate mineral particle segmentation is the most critical step for intellige... Intelligent identification of sandstone slice images using deep learning technology is the development trend of mineral identification,and accurate mineral particle segmentation is the most critical step for intelligent identification.A typical identification model requires many training samples to learn as many distinguishable features as possible.However,limited by the difficulty of data acquisition,the high cost of labeling,and privacy protection,this has led to a sparse sample number and cannot meet the training requirements of deep learning image identification models.In order to increase the number of samples and improve the training effect of deep learning models,this paper proposes a tight sandstone image data augmentation method by combining the advantages of the data deformation method and the data oversampling method in the Putaohua reservoir in the Sanzhao Sag of the Songliao Basin as the target area.First,the Style Generative Adversarial Network(StyleGAN)is improved to generate high-resolution tight sandstone images to improve data diversity.Second,we improve the Automatic Data Augmentation(AutoAugment)algorithm to search for the optimal augmentation strategy to expand the data scale.Finally,we design comparison experiments to demonstrate that this method has obvious advantages in generating image quality and improving the identification effect of deep learning models in real application scenarios. 展开更多
关键词 tight sandstone image synthesis generative adversarial networks data augmentation image segmentation
下载PDF
A new NMR-data-based method for predicting petrophysical properties of tight sandstone reservoirs
11
作者 Mi Liu Ranhong Xie +3 位作者 Jun Li Hao Li Song Hu Youlong Zou 《Energy Geoscience》 2023年第2期64-71,共8页
Evaluating the permeability and irreducible water saturation of tight sandstone reservoirs is challenging.This study uses distribution functions to fit measured NMR T_(2)distributions of tight sandstone reservoirs and... Evaluating the permeability and irreducible water saturation of tight sandstone reservoirs is challenging.This study uses distribution functions to fit measured NMR T_(2)distributions of tight sandstone reservoirs and extract parameters for characterizing pore size distribution.These parameters are then used to establish prediction models for permeability and irreducible water saturation of reservoirs.Results of comparing the fit of the T_(2)distributions by the Gauss and Weibull distribution functions show that the fitting accuracy with the Weibull distribution function is higher.The physical meaning of the statistical parameters of the Weibull distribution function is defined to establish nonlinear prediction models of permeability and irreducible water saturation using the radial basis function(RBF)method.Correlation coefficients between the predicted values by the established models and the measured values of the tight sandstone core samples are 0.944 for permeability and 0.851 for irreducible water saturation,which highlight the effectiveness of the prediction models. 展开更多
关键词 NMR permeability Irreducible water saturation tight sandstone Weibull distribution function RBF
下载PDF
Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs:A case study from the Triassic Yanchang Formation,Ordos Basin
12
作者 Yu-Bin Yang Wen-Lian Xiao +8 位作者 Ling-Li Zheng Qi-Hong Lei Chao-Zhong Qin You-An He Shuai-Shuai Liu Min Li Yong-Ming Li Jin-Zhou Zhao Meng Chen 《Petroleum Science》 SCIE EI CSCD 2023年第5期2892-2907,共16页
The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characte... The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone. 展开更多
关键词 tight sandstone Pore size distribution(PSD) Throat size distribution(TSD) Pore and throat heterogeneity Gas-phase flow capacity Nuclear magnetic resonance(NMR) Constant-rate mercury injection(CRMI)
下载PDF
Spatial-temporal coupling between high-quality source rocks and reservoirs for tight sandstone oil and gas accumulations in the Songliao Basin, China 被引量:6
13
作者 Laixing Cai Guolin Xiao +2 位作者 Shuangfang Lu Jiao Wang Zhiqiang Wu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第3期387-397,共11页
The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze th... The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze the fundamental oil and gas accumulation processes occurring in the Songliao Basin,contrasting tight oil sand reservoirs in the south with tight gas sand reservoirs in the north.This is done using geochemical data,constant-rate and conventional mercury injection experiments,and fluid inclusion analyses.Our results demonstrate that as far as fluid mobility is concerned,the expulsion center coincides with the overpressure zone,and its boundary limits the occurrence of tight oil and gas accumulations.In addition,the lower permeability limit of high-quality reservoirs,controlled by pore-throat structures,is 0.1×10^-3μm^2 in the fourth member of the Lower Cretaceous Quantou Formation(K1q^4)in the southern Songliao Basin,and 0.05×10^-3μm^2 in the Lower Cretaceous Shahezi Formation(K1sh)in the northern Songliao Basin.Furthermore,the results indicate that the formation of tight oil and gas reservoirs requires the densification of reservoirs prior to the main phase of hydrocarbon expulsion from the source rocks.Reservoir“sweet spots”develop at the intersection of high-quality source rocks(with high pore pressure)and reservoirs(with high permeability). 展开更多
关键词 Spatial-temporal COUPLING HIGH-QUALITY source rock HIGH-QUALITY sandstone tight sandstone reservoir Songliao Basin
下载PDF
A Volumetric Model for Evaluating Tight Sandstone Gas Reserves in the Permian Sulige Gas Field,Ordos Basin,Central China 被引量:5
14
作者 CUI Mingming FAN Aiping +3 位作者 WANG Zongxiu GAO Wanli LI Jinbu LI Yijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第2期386-399,共14页
To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permi... To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permian Sulige gas field in the Ordos Basin. The reserves can be determined by four major parameters of reservoir cutoffs, net pay, gas-bearing area and compression factor Z, which are controlled by reservoir characteristics and sedimentation. Well logging, seismic analysis, core analysis and gas testing, as well as thin section identification and SEM analysis were used to analyze the pore evolution and pore-throat structure. The porosity and permeability cutoffs are determined by distribution function curve,empirical statistics and intersection plot. Net pay and gas-bearing area are determined based on the cutoffs, gas testing and sand body distribution, and the compression factor Z is obtained by gas component. The results demonstrate that the reservoir in the Sulige gas field is characterized by ultralow porosity and permeability, and the cutoffs of porosity and permeability are 5% and 0.15×10^(–3) μm^2, respectively. The net pay and gas-bearing area are mainly affected by the sedimentary facies, sand body types and distribution. The gas component is dominated by methane which accounts for more than 90%, and the compression factor Z of H_8(P_2h_8) and S_1(P_1s_1) are 0.98 and 0.985, respectively. The distributary channels stacked and overlapped, forming a wide and thick sand body with good developed intergranular pores and intercrystalline pores. The upper part of channel sand with good porosity and permeability can be sweet spot for gas exploration. The complete set of calculation systems proposed for tight gas reserve calculation has proved to be effective based on application and feedback. This model provides a new concept and consideration for reserve prediction and calculation in other areas. 展开更多
关键词 tight sandstone reservoir volumetric GAS reserve PERMIAN SULIGE GAS field ORDOS Basin
下载PDF
Effects of effective stress and temperature on permeability of sandstone from CO2-plume geothermal reservoir 被引量:4
15
作者 Y.Z.Sun L.Z.Xie +2 位作者 B.He C.Gao J.Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期819-827,共9页
Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke's model(TPHM) is introd... Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke's model(TPHM) is introduced to understand the influences of effective stress and temperature on permeability of soft and hard parts(two parts) of rock based on coupling thermo-hydro-mechanical tests.Under a fixed temperature level(25 ℃.35 ℃.50 ℃.65 ℃.80 ℃.90 ℃ and 95 ℃).the tests were carried out in a conventional triaxial system whereas the confining pressure was remained at 50 MPa.and the pore pressure was increased to the specified levels step by step.i.e.8 MPa,18 MPa.28 MPa.38 MPa.41 MPa,44 MPa.46 MPa and 48 MPa.The temperature-dependent relationships for two parts permeabilities are proposed on the basis of the initial test results.We point out that temperature of 65 ℃-90 ℃ is the threshold for the development of CO_2-plume geothermal(CPC) reservoir sandstone cracking under low effective stress(2-9 MPa) based on the relationship between temperature and soft part permeability.Furthermore,we discuss the effect of temperature on the two parts in the rock.The results indicate that as the temperature increases from 25 ℃ to 65 ℃.the flow channel in the hard part has a stronger response to temperature than that in the soft part at a fixed effective stress level,which is opposite to the situation of effective stress.Considering that natural rock is generally heterogeneous with non-uniform pore structure,we suggest a physical interpretation of the phenomenon that before the thermal cracking threshold the two parts have different responses to temperature. 展开更多
关键词 sandstone from CO2-plume GEOTHERMAL (CPG) reservoir Temperature and effective stress Flow channel Two parts permeabilities
下载PDF
Revisiting the methods for gas permeability measurement in tight porous medium 被引量:4
16
作者 Diansen Yang Wei Wang +2 位作者 Weizhong Chen Xianjun Tan Lige Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期263-276,共14页
Permeability is a key parameter to describe fluid transport properties of porous medium; however, the permeability measurement is extremely difficult for tight porous medium, e.g. fine-grained rock or dense soil. In t... Permeability is a key parameter to describe fluid transport properties of porous medium; however, the permeability measurement is extremely difficult for tight porous medium, e.g. fine-grained rock or dense soil. In this paper, three methods for gas permeability measurement, i.e. steady state method, pulse decay method(PDM) and pressure oscillation method(POM), are first reviewed and then their advantages and drawbacks are discussed. Both analytical and numerical solutions of gas permeability are presented for the tight porous medium. The results show that the analytical method is relatively simple but only valid under certain conditions, whilst the numerical method is more robust and generic, which can take into account several factors such as porosity, saturation, gas leakage, and unconventional boundary conditions. The influence of the effective porosity on the permeability determination is further analyzed using the proposed numerical method. In this study, new pressure data interpretation procedures for PDM and POM are proposed, and the obtained results can serve as a guidance to define a proper method for permeability measurement of the tight porous medium. 展开更多
关键词 permeability MEASUREMENT STEADY state METHOD Pulse decay method(PDM) Pressure oscillation method(POM) Effective porosity tight porous medium
下载PDF
Impact of rock type on the pore structures and physical properties within a tight sandstone reservoir in the Ordos Basin, NW China 被引量:6
17
作者 Xiang-Dong Yin Shu Jiang +4 位作者 Shi-Jia Chen Peng Wu Wei Gao Ji-Xian Gao Xian Shi 《Petroleum Science》 SCIE CAS CSCD 2020年第4期896-911,共16页
The pore-throat systems and physical properties of tight sandstone reservoirs are complex,and deposition is thought to be a fundamental control for them.In this study,the impacts of the full ranges of rock types(from ... The pore-throat systems and physical properties of tight sandstone reservoirs are complex,and deposition is thought to be a fundamental control for them.In this study,the impacts of the full ranges of rock types(from pebbly coarse sandstone to fine sandstone) on the pore structures and physical properties of the Permian tight sandstone reservoir in the eastern Ordos Basin were investigated comprehensively through a series of experiments including conventional physical testing,thin-section analysis,scanning electron microscopy,nuclear magnetic resonance analysis and high-pressure mercury injection tests.The results showed that the coarser-grained sandstones tend to have higher feldspar content and lower percentage of cements,leading to strong dissolution,weak cementation and improved porosity and permeability.The medium sandstone has the highest level of quartz and the lowest average content of feldspar,resulting in strong heterogeneity of physical properties.Only those medium sandstone reservoirs with relatively high content of feldspars have better physical properties.Additionally,the coarser-grained sandstones contain relatively large dissolution pores(nearly 200 μm),whereas the finer-grained sandstones have more intercrystalline pores with a relatively more homogeneous pore structure.The pebbly coarse sandstone and coarse sandstone reservoirs are favorable targets with best physical properties. 展开更多
关键词 Pore size distribution Pore types Physical properties tight sandstone Ordos Basin
下载PDF
Pore Size Distribution of a Tight Sandstone Reservoir and its Effect on Micro Pore-throat Structure: A Case Study of the Chang 7 Member of the Xin’anbian Block, Ordos Basin, China 被引量:5
18
作者 LI Peng JIA Chengzao +4 位作者 JIN Zhijun LIU Quanyou BI HeZHENG Min WU Songtao HUANG Zhenkai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第2期219-232,共14页
Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Cha... Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution. 展开更多
关键词 tight sandstone reservoir PORE size distribution pore-throat structure ORDOS Basin CHANG 7 MEMBER
下载PDF
Effect of tight junction protein of intestinal epithelium and permeability of colonic mucosa in pathogenesis of injured colonic barrier during chronic recovery stage of rats with inflammatory bowel disease 被引量:2
19
作者 Chun-Mei Xu Xiu-Mei Li +1 位作者 Bing-Zhao Qin Bo Liu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第2期143-147,共5页
Objective: To discuss the changes in the tight junction protein of intestinal epithelium and permeability of colonic mucosa and its possible mechanism by building the rat mode of inflammatory bowel disease at the chro... Objective: To discuss the changes in the tight junction protein of intestinal epithelium and permeability of colonic mucosa and its possible mechanism by building the rat mode of inflammatory bowel disease at the chronic recovery stage. Methods: A total of 36 SD rats were divided into the model group and control one according to the random number table, with 18 rats in each group. Rats in the model group were given the 3% dextran sulfate sodium solution by the way of drinking for 7 d to build the rat model of inflammatory bowel disease, while rats in the control group were given free drinking of water. Six rats were executed at day 7, 14 and 21 respectively. The colonic tissues were collected from rats to observe the pathological changes of colonic mucosa. The activity of myeloperoxidase was detected and the white blood count was performed for rats in each group. The Ussing chamber technique was employed to detect the transepithelial electrical resistance(TER) and short-circuit current(SC) of colonic mucosa of rats in different time intervals; the quantum dots labeling technique was employed to detect the expression level of claudin-1 and claudin-2 in the colonic tissues. Results: After the successful modeling, the weight of rats in the model group was significantly reduced, while the disease activity index score was increased. The weight was at the lowest level at day 14 and then it began to increase afterwards. The disease activity index score was at the highest level at day 12 and then it began to decrease gradually. The activity of myeloperoxidase and WBC for rats in the model group all reached the peak value at day 14 and then decreased gradually. There was no significant difference in the changes of TER and SC in different time intervals for rats in the control group(P>0.05). TER of model group was at the lowest level at day 14 and then increased gradually; SC was at the highest level at day 14 and then decreased gradually. TER of model group at day 7, 14 and 21 was significantly lower than that of control group, while SC of model group was significantly higher than that of control group(P<0.05). There was no significant difference in the change of mean fluorescence intensity of claudin-1 and claudin-2 in different time intervals for rats in the control group(P>0.05). The claudin-1 and claudin-2 for rats in the model group reached the highest level at day 14 and then decreased gradually. The claudin-1 and claudin-2 of model group at day 7, 14 and 21 was significantly higher than that of control group(P<0.05). Conclusions: After the acute stage, the inflammatory bowel disease is then in the chronic recovery stage; the increased permeability of colonic mucosa and increased expression of tight junction protein of intestinal epithelium are closely related to the pathogenesis and development of disease. The tight junction protein plays a key role in the pathogenesis of injured colonic barrier of inflammatory bowel disease. 展开更多
关键词 Inflammatory BOWEL disease tight junction protein COLONIC MUCOSA permeability COLONIC BARRIER
下载PDF
Multifractal characteristics of shale and tight sandstone pore structures with nitrogen adsorption and nuclear magnetic resonance 被引量:4
20
作者 Fu-Yong Wang Kun Yang Yun Zai 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1209-1220,共12页
Based on the experiments of nitrogen gas adsorption(N_2 GA) and nuclear magnetic resonance(NMR),the multifractal characteristics of pore structures in shale and tight s andstone from the Chang 7 member of Trias sic Ya... Based on the experiments of nitrogen gas adsorption(N_2 GA) and nuclear magnetic resonance(NMR),the multifractal characteristics of pore structures in shale and tight s andstone from the Chang 7 member of Trias sic Yanchang Formation in Ordos Basin,NW China,are investigated.The multifractal spectra obtained from N2 GA and NMR are analyzed with pore throat structure parameters.The results show that the pore size distributions obtained from N2 GA and NMR are different,and the obtained multifractal characteristics vary from each other.The specific surface and total pore volume obtained by N2 GA experiment have correlations with multifractal characteristics.For the core samples with the similar specific surface,the value of the deviation of multifractal spectra Rd increases with the increase in the proportion of large pores.When the proportion of macropores is small,the Rd value will increase with the increase in specific surface.The multifractal characteristics of pore structures are influenced by specific surface area,average pore size and adsorption volume measured from N2 GA experiment.The multifractal characteristic parameters of tight sandstone measured from NMR spectra are larger than those of shale,which may be caused by the differences in pore size distribution and porosity of shale and tight sandstone. 展开更多
关键词 SHALE tight sandstone Nitrogen adsorption Nuclear magnetic resonance MULTIFRACTAL Pore structure
下载PDF
上一页 1 2 192 下一页 到第
使用帮助 返回顶部