Objective To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. Methods Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with...Objective To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. Methods Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with 2 seconds interval. The mice were injected with 2% Evans Blue solution through caudal vein at different time points after exposure, and the permeability of BTB was monitored using a fluorescence microscope. The testis sample for the transmission electron microscopy was prepared at 2 h after EMP exposure. The permeability of BTB in mice was observed by using Evans Blue tracer and lanthanum nitrate tracer. Results After exposure, cloudy Evans Blue was found in the testicle convoluted seminiferous tubule of mice. Lanthanum nitrate was observed not only between testicle spermatogonia near seminiferous tubule wall and sertoli cells, but also between sertoli cells and primary spermatocyte or secondary spermatocyte. In contrast, lanthanum nitrate in control group was only found in the testicle sertoli cells between seminiferous tubule and near seminifdrous tubule wall. Conclusion EMP exposure could increase the permeability of BTB in the mice.展开更多
BACKGROUND: Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema. OBJECTIVE: To observe the effects of VEGF expression on permeabil...BACKGROUND: Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema. OBJECTIVE: To observe the effects of VEGF expression on permeability of the blood-brain barrier (BBB) during high-altitude and hypoxia exposure, and to investigate the correlation between VEGF expression and BBB permeability with regard to Evans blue staining and brain edema during high-altitude exposure. DESIGN, TIME AND SETTING: The randomized, controlled, animal study was performed at the Tanggula Etape, Central Laboratory of Chengdu Medical College, and Central Laboratory of General Hospital of Chengdu Military Area Command of Chinese PLA, China, from July 2003 to November 2004. MATERIALS: Quantitative RT-PCR kit (Sigma, USA), VEGF ELISA kit (Biosource, USA), and Evans blue (Jingchun, China) were acquired for this study. METHODS: A total of 180 Wistar rats were equally and randomly assigned to 15 groups: low-altitude (500 m), middle-altitude (2 880 m), high-altitude (4 200 m), super-high-altitude (5 000 m), 1,3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 days of super high-altitude exposure. Wistar rats were exposed to various altitude gradients to establish a hypoxia model. MAIN OUTCOME MEASURES: Brain water content was calculated according to the wet-to-dry weight ratio. BBB permeability to Evans blue was determined by colorimetric method. VEGF mRNA and protein levels in brain tissues were detected using RT-PCR and double-antibody sandwich ELISA. RESULTS: Brain water content, BBB permeability to Evans blue, and VEGF mRNA and protein levels in brain tissues increased with increasing altitude and prolonged exposure to altitude. The greatest increase was determined on day 9 upon ascending 5 000 m. Simultaneously, VEGF expression positively correlated to BBB permeability of Evans blue and brain water content (r = 0.975, 0.917, P〈 0.01). CONCLUSION: Increased VEGF protein and mRNA expression was responsible for increased BBB permeability, which may be an important mechanism underlying brain edema during high-altitude exposure.展开更多
Objective: To discuss the changes in the tight junction protein of intestinal epithelium and permeability of colonic mucosa and its possible mechanism by building the rat mode of inflammatory bowel disease at the chro...Objective: To discuss the changes in the tight junction protein of intestinal epithelium and permeability of colonic mucosa and its possible mechanism by building the rat mode of inflammatory bowel disease at the chronic recovery stage. Methods: A total of 36 SD rats were divided into the model group and control one according to the random number table, with 18 rats in each group. Rats in the model group were given the 3% dextran sulfate sodium solution by the way of drinking for 7 d to build the rat model of inflammatory bowel disease, while rats in the control group were given free drinking of water. Six rats were executed at day 7, 14 and 21 respectively. The colonic tissues were collected from rats to observe the pathological changes of colonic mucosa. The activity of myeloperoxidase was detected and the white blood count was performed for rats in each group. The Ussing chamber technique was employed to detect the transepithelial electrical resistance(TER) and short-circuit current(SC) of colonic mucosa of rats in different time intervals; the quantum dots labeling technique was employed to detect the expression level of claudin-1 and claudin-2 in the colonic tissues. Results: After the successful modeling, the weight of rats in the model group was significantly reduced, while the disease activity index score was increased. The weight was at the lowest level at day 14 and then it began to increase afterwards. The disease activity index score was at the highest level at day 12 and then it began to decrease gradually. The activity of myeloperoxidase and WBC for rats in the model group all reached the peak value at day 14 and then decreased gradually. There was no significant difference in the changes of TER and SC in different time intervals for rats in the control group(P>0.05). TER of model group was at the lowest level at day 14 and then increased gradually; SC was at the highest level at day 14 and then decreased gradually. TER of model group at day 7, 14 and 21 was significantly lower than that of control group, while SC of model group was significantly higher than that of control group(P<0.05). There was no significant difference in the change of mean fluorescence intensity of claudin-1 and claudin-2 in different time intervals for rats in the control group(P>0.05). The claudin-1 and claudin-2 for rats in the model group reached the highest level at day 14 and then decreased gradually. The claudin-1 and claudin-2 of model group at day 7, 14 and 21 was significantly higher than that of control group(P<0.05). Conclusions: After the acute stage, the inflammatory bowel disease is then in the chronic recovery stage; the increased permeability of colonic mucosa and increased expression of tight junction protein of intestinal epithelium are closely related to the pathogenesis and development of disease. The tight junction protein plays a key role in the pathogenesis of injured colonic barrier of inflammatory bowel disease.展开更多
Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This stud...Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L- tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.展开更多
Objective To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. Methods An in vitro BBB model, established by co-culturing brain microvascular end...Objective To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. Methods An in vitro BBB model, established by co-culturing brain microvascular endothelial cells (BMVEC) and astroglial cells (AC) isolated from rat brain, was exposed to EMP at 100 kV/m and 400 kV/m, respectively. Permeability of the model was assayed by measuring the transendothelial electrical resistance (TEER) and the horseradish peroxidase (HRP) transmission at different time points. Levels of BBB tight junction-related proteins were measured at O, 1, 2, 4, 8, 12, 16, 20, 24 h after EMP exposure by Western blotting. Results The TEER level was lower in BBB model group than in control group at 12 h after EMP, exposure which returned to its normal level at 24 h. The 24 h recovery process was triphasic and biphasic respectively after EMP exposure at 100 kV/m and 400 kV/m. Following exposure to 400 kV/m EMP, the HRP permeability increased at 1-12 h and returned to its normal level at 24 h. Western blotting showed that the claudin-5 and ZO-1 protein levels were changed after EMP exposure. Conclusion EMP exposure at 100 kV/m and 400 kV/m can increase the permeability of in vitro BBB model and BBB tight junction-related proteins such as ZO-1 and claudin-5 may change EMP-induced BBB permeability.展开更多
OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism. DATA SOURCES: We searched for the articles of permeability of...OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism. DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain is- chemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English. STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded. DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved. DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2^+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca^+2and the release of intracellular Ca^2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB. CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB destruction after cerebral ischemla.展开更多
Objective To comparatively study the toxicity of four metal-containing nanoparticles(MNPs) and their chemical counterparts to the air-blood barrier(ABB) permeability using an in vitro model.Methods ABB model, which wa...Objective To comparatively study the toxicity of four metal-containing nanoparticles(MNPs) and their chemical counterparts to the air-blood barrier(ABB) permeability using an in vitro model.Methods ABB model, which was developed via the co-culturing of A549 and pulmonary capillary endothelium, was exposed to spherical CuO-NPs(divided into CuO-40, CuO-80, and CuO-100 based on particle size), nano-Al2O3(sheet and short-rod-shaped), nano-ZnO, nano-Pb S, CuSO4, Al2(SO4)3, Zn(CH3COO)2, and Pb(NO3)2 for 60 min.Every 10 min following exposure, the cumulative cleared volume(ΔTCL) of Lucifer yellow by the model was calculated.A clearance curve was established using linear regression analysis of ΔTCL versus time.Permeability coefficient(P) was calculated based on the slope of the curve to represent the degree of change in the ABB permeability.Results The results found the increased P values of CuO-40, CuO-80, sheet, and short-rod-shaped nano-Al2O3, Al2(SO4)3, and Pb(NO3)2.Among them, small CuO-40 and CuO-80 were stronger than CuO-100 and CuSO4;no difference was observed between Al2(SO4)3 and sheet and short-rod-shaped nano-Al2O3;and nano-Pb S was slightly weaker than Pb(NO3)2.So clearly the MNPs possess diverse toxicity.Conclusion ABB permeability abnormality means pulmonary toxicity potential.More studies are warranted to understand MNPs toxicity and ultimately control the health hazards.展开更多
The gastrointestinal barrier is-with approximately 400 m^2-the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorpt...The gastrointestinal barrier is-with approximately 400 m^2-the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.展开更多
Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal...Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome.展开更多
Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastro- intestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into rel...Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastro- intestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into release of proinflammatory mediators that can cause stimulation of nerve endings that could affect afferent nerve terminals and change their perception, affect intestinal motility, increase intestinal hyperpermeability and, in susceptible individuals, modulate the inflammation. Thus, it is not surprising that MC are an important element in the pathogenesis of inflammatory bowel disease and non inflammatory GI disorders such as IBS and mast cell enterocolitis.展开更多
The use of non-steroidal anti-inflammatory drugs(NSAIDs) is widespread worldwide thanks to their analgesic, anti-inflammatory and antipyretic effects. However, even more attention is placed upon the recurrence of dige...The use of non-steroidal anti-inflammatory drugs(NSAIDs) is widespread worldwide thanks to their analgesic, anti-inflammatory and antipyretic effects. However, even more attention is placed upon the recurrence of digestive system complications in the course of their use. Recent data suggests that the complications of the lower gastro-intestinal tract may be as frequent and severe as those of the upper tract. NSAIDs enteropathy is due to enterohepatic recycling of the drugs resulting in a prolonged and repeated exposure of the intestinal mucosa to the compound and its metabolites. Thus leading to so-called topical effects, which, in turn, lead to an impairment of the intestinal barrier. This process determines bacterial translocation and toxic substances of intestinal origin in the portal circulation, leading to an endotoxaemia. This condition could determine a liver inflammatory response and might promote the development of nonalcoholic steatohepatitis, mostly in patients with risk factors such as obesity, metabolic syndrome and a high fat diet, which may induce a small intestinal bacterial overgrowth and dysbiosis. This alteration of gut microbiota may contribute to nonalcoholic fatty liver disease and its related disorders in two ways: firstly causing a malfunction of the tight junctions that play a critical role in the increase of intestinal permeability, and then secondly leading to the development of insulin resistance, body weight gain, lipogenesis, fibrogenesis and hepatic oxidative stress.展开更多
AIM:To assess the intestinal permeability (IP) in patients with Crohn's disease (CD) and study the association of IP with the patient and disease characteristics. METHODS: One hundred and twenty five consecutive p...AIM:To assess the intestinal permeability (IP) in patients with Crohn's disease (CD) and study the association of IP with the patient and disease characteristics. METHODS: One hundred and twenty five consecutive patients of CD (Males: 66) were diagnosed on the basis of a combination of standard clinical, endoscopic, imaging and histological features. CD activity index (CDAI) was used to calculate the activity of the disease while the behavior of the disease was assessed by the modified Montreal classification. IP was measured by the ratio of the percentage excretion of ingested doses of lactulose and mannitol in urine (LMR). The upper limit of normality of LMR (0.037) was derived from 22 healthy controls. RESULTS: Thirty six percent of patients with CD had increased IP. There was no significant difference in mannitol excretion (patients vs controls = 12.5% vs 14.2%, P = 0.4652), but lactulose excretion was significantly higher in patients compared to healthy controls (patients vs controls = 0.326% vs 0.293%, P = 0.0391). The mean LMR was also significantly higher in the patients as compared to healthy controls [0.027 (0.0029-0.278) vs 0.0164 (0.0018-0.0548), P = 0.0044]. Male patients had a higher LMR compared to females [0.036 (95% CI 0.029, 0.046) vs 0.022 (95% CI 0.0178, 0.028) (P = 0.0024), though there was no difference in the number of patients with abnormal IP in boththe sexes. Patients with an ileo-colonic disease had a higher LMR than those with only colonic disease [0.045 (95% CI 0.033, 0.06) vs 0.021 (95% CI 0.017, 0.025) (P < 0.001)]. Of patients with ileo-colonic disease, 57.8% had an abnormal IP, compared to 26.7% with colonic and 15.6% with small intestinal disease. Patients with a stricturing disease had significantly higher LMR compared to non-fistulising non-stricturing disease [0.043 (95% CI 0.032, 0.058) vs 0.024 (95% CI 0.019, 0.029) (P = 0.0062)]. There was no correlation of IP with age, disease activity, duration of illness, D-xylose absorption, upper GI involvement, perianal disease, and extra- intestinal manifestations. On multiple regression analysis, male gender and ileo-colonic disease were independent factors associated with increased IP. Gender, location, behavior of the disease and upper GI involvement could explain up to 23% of variability in IP (R2 = 0.23). CONCLUSION: IP was increased in 36% of patients with CD. Male gender and an ileo-colonic disease were the independent factors associated with increased IP.展开更多
AIM: To evaluate methods measuring the intestinal permeability in chronic kidney disease (CKD) and clarify whether there is an increased intestinal permeability in CKD.METHODS: We reviewed the literature in accord...AIM: To evaluate methods measuring the intestinal permeability in chronic kidney disease (CKD) and clarify whether there is an increased intestinal permeability in CKD.METHODS: We reviewed the literature in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) protocol and performed a systematic literature search through MEDline and EMBASE. All controlled trials and cohort studies using non-invasive methods to assess intestinal permeability in CKD patients were included. Excluded were: Conference abstracts and studies including patients younger than 18 years or animals. From the included studies we summarized the used methods and their advantages and disadvantages. For the comparison of their results we divided the included studies in two categories based on their included patient population, either assessing the intestinal permeability in mild to moderate CKD patients or in end stage renal disease (ESRD) patients. Results were graphically displayed in two plots, one comparing the intestinal permeability in mild to moderate CKD patients to healthy controls and one comparing the intestinal permeability in ESRD patients to healthy controls. RESULTS: From the 480 identifed reports, 15 met our inclusion criteria. Methods that were used to assess the intestinal permeability varied from markers measured in plasma to methods based on calculating the urinary excretion of an orally administered test substance. None of the applied methods has been validated in CKD patients and the infuence of decreased renal function on the different methods remains unclear to a certain extent. Methods that seem the least likely to be influenced by decreased renal function are the quantitative PCR (qPCR) for bacterial DNA in blood and D-lactate. Considering the results published by the included studies; the studiesincluding patients with mild to moderate CKD conductedconflicting results. Some studies did report an increasein intestinal permeability whilst other did not find asignificant increased permeability. However, despite thevariety in used methods among the different studies, allstudies measuring the intestinal permeability in ESRDpoint out a significant increased intestinal permeability.Results should nevertheless be interpreted with cautiondue to the possible infuence of a decreased glomerularfltration rate on test results.CONCLUSION: The intestinal permeability in CKD: (1) could be measured by qPCR for bacterial DNA in blood and D-lactate; and (2) seems to be increased in ESRD.展开更多
AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induc...AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy(DR)patients,and FBN1 expression was detected in retinas from STZ-diabetic mice and controls.In the Gene Expression Omnibus(GEO)database,the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients.Using lentivirus to knock down FBN1 levels,vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay,fluorescein fundus angiography(FFA)and immunofluorescence labeled with tight junction marker in vivo.High glucose-induced monkey retinal vascular endothelial cells(RF/6A)were used to investigate effects of FBN1 on the cells in vitro.The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance(TEER)assay and flow cytometry,respectively.RESULTS:FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients(GSE60436 datasets)using RNA-seq approach.Besides,knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection.Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group,and knocking down of FBN1 increased the tight junction levels.In vitro,30 mmol/L glucose could significantly inhibit viability of RF/6A cells,and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation.Down-regulation of FBN1 reduced high glucose(HG)-stimulated retinal microvascular endothelial cell permeability,increased TEER,and inhibited RF/6A cell apoptosis in vitro.CONCLUSION:The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions.Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage,reduce vascular leakage,cell apoptosis,and maintain vascular endothelial cell barrier function.展开更多
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition...This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.展开更多
An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducib...An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport.Induced-pluripotent stem cell(i PSC) technology provides reproducible cell resources for in vitro BBB modeling.Here, we generated a human in vitro BBB model by differentiating the human i PSC(hi PSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins(ZO-1,claudin-5, and occludin) and endothelial markers(von Willebrand factor and Ulex), as well as high transendothelial electrical resistance(TEER)(1560 X.cm2±230 X.cm2) and c-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model(2970 X.cm2 to 4185 X.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hi PSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells,including P-glycoprotein(Pgp) and breast cancer resistant protein(BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds(R2= 0.982 and R2= 0.9973,respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB.展开更多
The blood-brain barrier permeability of 20(S) and 20(R)-protopanaxatriol epimers and dammar-20(22)E,24-diene- 313,6α,12β-triol were investigated using the MDCK-pHaMDR cell monolayer model. The bidirectional pe...The blood-brain barrier permeability of 20(S) and 20(R)-protopanaxatriol epimers and dammar-20(22)E,24-diene- 313,6α,12β-triol were investigated using the MDCK-pHaMDR cell monolayer model. The bidirectional permeability tests were carried out, and the apparent permeability coefficients (Papp) were calculated. The two protopanaxatriol epimers showed good permeability with Papp values of-10^-5 cm/s, whereas dammar-20(22)E,24-diene-3β,6α, 12β-triol showed poor permeability with Papp of 〈1 × 10^-7 cm/s. The three compounds showed differences in intracellular accumulations due to their different structures. Inhibition of P-gp with verapamil showed that the transport mechanisms in MDCK-pHaMDR cell monolayer for compounds 1 and 2 epimers were not only simple passive diffusion but also involving an effiux way mediated by P-gp. These findings provided new basis for the further study of compounds 1 and 2 acting on the brain.展开更多
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases,stroke,traumatic brain injury,and systemic diseases such as sepsis,viral and bact...Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases,stroke,traumatic brain injury,and systemic diseases such as sepsis,viral and bacterial infections,and cancer.Compromised endothelial sealing leads to leaking blood vessels,followed by vasogenic edema.Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death.Brain microvascular endothelial cells,together with astrocytes,pericytes,microglia,and neurons form a selective barrier,the so-called blood-brain barrier,which regulates the movement of molecules inside and outside of the brain.Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood.Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years.One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3.In this review,we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.展开更多
基金This research was supported by the Natural Science Foundation of Shaanxi (No. 2007C267)National Natural Science Foundation of China (No. 60601026)National 863 Project (No. 2006 AA0224C3)
文摘Objective To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. Methods Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with 2 seconds interval. The mice were injected with 2% Evans Blue solution through caudal vein at different time points after exposure, and the permeability of BTB was monitored using a fluorescence microscope. The testis sample for the transmission electron microscopy was prepared at 2 h after EMP exposure. The permeability of BTB in mice was observed by using Evans Blue tracer and lanthanum nitrate tracer. Results After exposure, cloudy Evans Blue was found in the testicle convoluted seminiferous tubule of mice. Lanthanum nitrate was observed not only between testicle spermatogonia near seminiferous tubule wall and sertoli cells, but also between sertoli cells and primary spermatocyte or secondary spermatocyte. In contrast, lanthanum nitrate in control group was only found in the testicle sertoli cells between seminiferous tubule and near seminifdrous tubule wall. Conclusion EMP exposure could increase the permeability of BTB in the mice.
基金Supported by:the Tackle Key Problem in Science and Technology during the "11~(th) Five-Year Plan" Period of Chinese PLA,No.06G030
文摘BACKGROUND: Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema. OBJECTIVE: To observe the effects of VEGF expression on permeability of the blood-brain barrier (BBB) during high-altitude and hypoxia exposure, and to investigate the correlation between VEGF expression and BBB permeability with regard to Evans blue staining and brain edema during high-altitude exposure. DESIGN, TIME AND SETTING: The randomized, controlled, animal study was performed at the Tanggula Etape, Central Laboratory of Chengdu Medical College, and Central Laboratory of General Hospital of Chengdu Military Area Command of Chinese PLA, China, from July 2003 to November 2004. MATERIALS: Quantitative RT-PCR kit (Sigma, USA), VEGF ELISA kit (Biosource, USA), and Evans blue (Jingchun, China) were acquired for this study. METHODS: A total of 180 Wistar rats were equally and randomly assigned to 15 groups: low-altitude (500 m), middle-altitude (2 880 m), high-altitude (4 200 m), super-high-altitude (5 000 m), 1,3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 days of super high-altitude exposure. Wistar rats were exposed to various altitude gradients to establish a hypoxia model. MAIN OUTCOME MEASURES: Brain water content was calculated according to the wet-to-dry weight ratio. BBB permeability to Evans blue was determined by colorimetric method. VEGF mRNA and protein levels in brain tissues were detected using RT-PCR and double-antibody sandwich ELISA. RESULTS: Brain water content, BBB permeability to Evans blue, and VEGF mRNA and protein levels in brain tissues increased with increasing altitude and prolonged exposure to altitude. The greatest increase was determined on day 9 upon ascending 5 000 m. Simultaneously, VEGF expression positively correlated to BBB permeability of Evans blue and brain water content (r = 0.975, 0.917, P〈 0.01). CONCLUSION: Increased VEGF protein and mRNA expression was responsible for increased BBB permeability, which may be an important mechanism underlying brain edema during high-altitude exposure.
基金supported by Project of Science and Technology Development of Hubei Province(No.2013HBF21825)
文摘Objective: To discuss the changes in the tight junction protein of intestinal epithelium and permeability of colonic mucosa and its possible mechanism by building the rat mode of inflammatory bowel disease at the chronic recovery stage. Methods: A total of 36 SD rats were divided into the model group and control one according to the random number table, with 18 rats in each group. Rats in the model group were given the 3% dextran sulfate sodium solution by the way of drinking for 7 d to build the rat model of inflammatory bowel disease, while rats in the control group were given free drinking of water. Six rats were executed at day 7, 14 and 21 respectively. The colonic tissues were collected from rats to observe the pathological changes of colonic mucosa. The activity of myeloperoxidase was detected and the white blood count was performed for rats in each group. The Ussing chamber technique was employed to detect the transepithelial electrical resistance(TER) and short-circuit current(SC) of colonic mucosa of rats in different time intervals; the quantum dots labeling technique was employed to detect the expression level of claudin-1 and claudin-2 in the colonic tissues. Results: After the successful modeling, the weight of rats in the model group was significantly reduced, while the disease activity index score was increased. The weight was at the lowest level at day 14 and then it began to increase afterwards. The disease activity index score was at the highest level at day 12 and then it began to decrease gradually. The activity of myeloperoxidase and WBC for rats in the model group all reached the peak value at day 14 and then decreased gradually. There was no significant difference in the changes of TER and SC in different time intervals for rats in the control group(P>0.05). TER of model group was at the lowest level at day 14 and then increased gradually; SC was at the highest level at day 14 and then decreased gradually. TER of model group at day 7, 14 and 21 was significantly lower than that of control group, while SC of model group was significantly higher than that of control group(P<0.05). There was no significant difference in the change of mean fluorescence intensity of claudin-1 and claudin-2 in different time intervals for rats in the control group(P>0.05). The claudin-1 and claudin-2 for rats in the model group reached the highest level at day 14 and then decreased gradually. The claudin-1 and claudin-2 of model group at day 7, 14 and 21 was significantly higher than that of control group(P<0.05). Conclusions: After the acute stage, the inflammatory bowel disease is then in the chronic recovery stage; the increased permeability of colonic mucosa and increased expression of tight junction protein of intestinal epithelium are closely related to the pathogenesis and development of disease. The tight junction protein plays a key role in the pathogenesis of injured colonic barrier of inflammatory bowel disease.
文摘Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L- tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.
基金supported by the National Basic Research Program of China(2011CB503704,2011CB503705)National Natural Science Foundation of China (No. 30970670, 60871068)
文摘Objective To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. Methods An in vitro BBB model, established by co-culturing brain microvascular endothelial cells (BMVEC) and astroglial cells (AC) isolated from rat brain, was exposed to EMP at 100 kV/m and 400 kV/m, respectively. Permeability of the model was assayed by measuring the transendothelial electrical resistance (TEER) and the horseradish peroxidase (HRP) transmission at different time points. Levels of BBB tight junction-related proteins were measured at O, 1, 2, 4, 8, 12, 16, 20, 24 h after EMP exposure by Western blotting. Results The TEER level was lower in BBB model group than in control group at 12 h after EMP, exposure which returned to its normal level at 24 h. The 24 h recovery process was triphasic and biphasic respectively after EMP exposure at 100 kV/m and 400 kV/m. Following exposure to 400 kV/m EMP, the HRP permeability increased at 1-12 h and returned to its normal level at 24 h. Western blotting showed that the claudin-5 and ZO-1 protein levels were changed after EMP exposure. Conclusion EMP exposure at 100 kV/m and 400 kV/m can increase the permeability of in vitro BBB model and BBB tight junction-related proteins such as ZO-1 and claudin-5 may change EMP-induced BBB permeability.
基金Special Topic of Scientific and Technological Re-search of Traditional ChineseMedicine of the State Adminis-tration of Traditional ChineseMedicine, No. 04-05JL13 theNational Natural Science Foun-dation of China, No.30371812
文摘OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism. DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain is- chemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English. STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded. DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved. DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2^+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca^+2and the release of intracellular Ca^2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB. CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB destruction after cerebral ischemla.
基金sponsored by the National Natural Science Foundation of China [No.81372949]the Young Scholar Scientific Research Foundation of China CDC [No.2016A206]
文摘Objective To comparatively study the toxicity of four metal-containing nanoparticles(MNPs) and their chemical counterparts to the air-blood barrier(ABB) permeability using an in vitro model.Methods ABB model, which was developed via the co-culturing of A549 and pulmonary capillary endothelium, was exposed to spherical CuO-NPs(divided into CuO-40, CuO-80, and CuO-100 based on particle size), nano-Al2O3(sheet and short-rod-shaped), nano-ZnO, nano-Pb S, CuSO4, Al2(SO4)3, Zn(CH3COO)2, and Pb(NO3)2 for 60 min.Every 10 min following exposure, the cumulative cleared volume(ΔTCL) of Lucifer yellow by the model was calculated.A clearance curve was established using linear regression analysis of ΔTCL versus time.Permeability coefficient(P) was calculated based on the slope of the curve to represent the degree of change in the ABB permeability.Results The results found the increased P values of CuO-40, CuO-80, sheet, and short-rod-shaped nano-Al2O3, Al2(SO4)3, and Pb(NO3)2.Among them, small CuO-40 and CuO-80 were stronger than CuO-100 and CuSO4;no difference was observed between Al2(SO4)3 and sheet and short-rod-shaped nano-Al2O3;and nano-Pb S was slightly weaker than Pb(NO3)2.So clearly the MNPs possess diverse toxicity.Conclusion ABB permeability abnormality means pulmonary toxicity potential.More studies are warranted to understand MNPs toxicity and ultimately control the health hazards.
文摘The gastrointestinal barrier is-with approximately 400 m^2-the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
文摘Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome.
文摘Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastro- intestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into release of proinflammatory mediators that can cause stimulation of nerve endings that could affect afferent nerve terminals and change their perception, affect intestinal motility, increase intestinal hyperpermeability and, in susceptible individuals, modulate the inflammation. Thus, it is not surprising that MC are an important element in the pathogenesis of inflammatory bowel disease and non inflammatory GI disorders such as IBS and mast cell enterocolitis.
文摘The use of non-steroidal anti-inflammatory drugs(NSAIDs) is widespread worldwide thanks to their analgesic, anti-inflammatory and antipyretic effects. However, even more attention is placed upon the recurrence of digestive system complications in the course of their use. Recent data suggests that the complications of the lower gastro-intestinal tract may be as frequent and severe as those of the upper tract. NSAIDs enteropathy is due to enterohepatic recycling of the drugs resulting in a prolonged and repeated exposure of the intestinal mucosa to the compound and its metabolites. Thus leading to so-called topical effects, which, in turn, lead to an impairment of the intestinal barrier. This process determines bacterial translocation and toxic substances of intestinal origin in the portal circulation, leading to an endotoxaemia. This condition could determine a liver inflammatory response and might promote the development of nonalcoholic steatohepatitis, mostly in patients with risk factors such as obesity, metabolic syndrome and a high fat diet, which may induce a small intestinal bacterial overgrowth and dysbiosis. This alteration of gut microbiota may contribute to nonalcoholic fatty liver disease and its related disorders in two ways: firstly causing a malfunction of the tight junctions that play a critical role in the increase of intestinal permeability, and then secondly leading to the development of insulin resistance, body weight gain, lipogenesis, fibrogenesis and hepatic oxidative stress.
文摘AIM:To assess the intestinal permeability (IP) in patients with Crohn's disease (CD) and study the association of IP with the patient and disease characteristics. METHODS: One hundred and twenty five consecutive patients of CD (Males: 66) were diagnosed on the basis of a combination of standard clinical, endoscopic, imaging and histological features. CD activity index (CDAI) was used to calculate the activity of the disease while the behavior of the disease was assessed by the modified Montreal classification. IP was measured by the ratio of the percentage excretion of ingested doses of lactulose and mannitol in urine (LMR). The upper limit of normality of LMR (0.037) was derived from 22 healthy controls. RESULTS: Thirty six percent of patients with CD had increased IP. There was no significant difference in mannitol excretion (patients vs controls = 12.5% vs 14.2%, P = 0.4652), but lactulose excretion was significantly higher in patients compared to healthy controls (patients vs controls = 0.326% vs 0.293%, P = 0.0391). The mean LMR was also significantly higher in the patients as compared to healthy controls [0.027 (0.0029-0.278) vs 0.0164 (0.0018-0.0548), P = 0.0044]. Male patients had a higher LMR compared to females [0.036 (95% CI 0.029, 0.046) vs 0.022 (95% CI 0.0178, 0.028) (P = 0.0024), though there was no difference in the number of patients with abnormal IP in boththe sexes. Patients with an ileo-colonic disease had a higher LMR than those with only colonic disease [0.045 (95% CI 0.033, 0.06) vs 0.021 (95% CI 0.017, 0.025) (P < 0.001)]. Of patients with ileo-colonic disease, 57.8% had an abnormal IP, compared to 26.7% with colonic and 15.6% with small intestinal disease. Patients with a stricturing disease had significantly higher LMR compared to non-fistulising non-stricturing disease [0.043 (95% CI 0.032, 0.058) vs 0.024 (95% CI 0.019, 0.029) (P = 0.0062)]. There was no correlation of IP with age, disease activity, duration of illness, D-xylose absorption, upper GI involvement, perianal disease, and extra- intestinal manifestations. On multiple regression analysis, male gender and ileo-colonic disease were independent factors associated with increased IP. Gender, location, behavior of the disease and upper GI involvement could explain up to 23% of variability in IP (R2 = 0.23). CONCLUSION: IP was increased in 36% of patients with CD. Male gender and an ileo-colonic disease were the independent factors associated with increased IP.
文摘AIM: To evaluate methods measuring the intestinal permeability in chronic kidney disease (CKD) and clarify whether there is an increased intestinal permeability in CKD.METHODS: We reviewed the literature in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) protocol and performed a systematic literature search through MEDline and EMBASE. All controlled trials and cohort studies using non-invasive methods to assess intestinal permeability in CKD patients were included. Excluded were: Conference abstracts and studies including patients younger than 18 years or animals. From the included studies we summarized the used methods and their advantages and disadvantages. For the comparison of their results we divided the included studies in two categories based on their included patient population, either assessing the intestinal permeability in mild to moderate CKD patients or in end stage renal disease (ESRD) patients. Results were graphically displayed in two plots, one comparing the intestinal permeability in mild to moderate CKD patients to healthy controls and one comparing the intestinal permeability in ESRD patients to healthy controls. RESULTS: From the 480 identifed reports, 15 met our inclusion criteria. Methods that were used to assess the intestinal permeability varied from markers measured in plasma to methods based on calculating the urinary excretion of an orally administered test substance. None of the applied methods has been validated in CKD patients and the infuence of decreased renal function on the different methods remains unclear to a certain extent. Methods that seem the least likely to be influenced by decreased renal function are the quantitative PCR (qPCR) for bacterial DNA in blood and D-lactate. Considering the results published by the included studies; the studiesincluding patients with mild to moderate CKD conductedconflicting results. Some studies did report an increasein intestinal permeability whilst other did not find asignificant increased permeability. However, despite thevariety in used methods among the different studies, allstudies measuring the intestinal permeability in ESRDpoint out a significant increased intestinal permeability.Results should nevertheless be interpreted with cautiondue to the possible infuence of a decreased glomerularfltration rate on test results.CONCLUSION: The intestinal permeability in CKD: (1) could be measured by qPCR for bacterial DNA in blood and D-lactate; and (2) seems to be increased in ESRD.
基金Supported by the Xingtai Key Research and Development Projects (No.2022zz073)the Hebei Key Research and Development Projects (No.23377712D).
文摘AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy(DR)patients,and FBN1 expression was detected in retinas from STZ-diabetic mice and controls.In the Gene Expression Omnibus(GEO)database,the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients.Using lentivirus to knock down FBN1 levels,vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay,fluorescein fundus angiography(FFA)and immunofluorescence labeled with tight junction marker in vivo.High glucose-induced monkey retinal vascular endothelial cells(RF/6A)were used to investigate effects of FBN1 on the cells in vitro.The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance(TEER)assay and flow cytometry,respectively.RESULTS:FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients(GSE60436 datasets)using RNA-seq approach.Besides,knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection.Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group,and knocking down of FBN1 increased the tight junction levels.In vitro,30 mmol/L glucose could significantly inhibit viability of RF/6A cells,and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation.Down-regulation of FBN1 reduced high glucose(HG)-stimulated retinal microvascular endothelial cell permeability,increased TEER,and inhibited RF/6A cell apoptosis in vitro.CONCLUSION:The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions.Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage,reduce vascular leakage,cell apoptosis,and maintain vascular endothelial cell barrier function.
文摘This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.
文摘An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport.Induced-pluripotent stem cell(i PSC) technology provides reproducible cell resources for in vitro BBB modeling.Here, we generated a human in vitro BBB model by differentiating the human i PSC(hi PSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins(ZO-1,claudin-5, and occludin) and endothelial markers(von Willebrand factor and Ulex), as well as high transendothelial electrical resistance(TEER)(1560 X.cm2±230 X.cm2) and c-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model(2970 X.cm2 to 4185 X.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hi PSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells,including P-glycoprotein(Pgp) and breast cancer resistant protein(BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds(R2= 0.982 and R2= 0.9973,respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB.
基金The National New Drug R&D Program(Grant No.2011BAI07B082009ZX09301-010)of China
文摘The blood-brain barrier permeability of 20(S) and 20(R)-protopanaxatriol epimers and dammar-20(22)E,24-diene- 313,6α,12β-triol were investigated using the MDCK-pHaMDR cell monolayer model. The bidirectional permeability tests were carried out, and the apparent permeability coefficients (Papp) were calculated. The two protopanaxatriol epimers showed good permeability with Papp values of-10^-5 cm/s, whereas dammar-20(22)E,24-diene-3β,6α, 12β-triol showed poor permeability with Papp of 〈1 × 10^-7 cm/s. The three compounds showed differences in intracellular accumulations due to their different structures. Inhibition of P-gp with verapamil showed that the transport mechanisms in MDCK-pHaMDR cell monolayer for compounds 1 and 2 epimers were not only simple passive diffusion but also involving an effiux way mediated by P-gp. These findings provided new basis for the further study of compounds 1 and 2 acting on the brain.
文摘Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases,stroke,traumatic brain injury,and systemic diseases such as sepsis,viral and bacterial infections,and cancer.Compromised endothelial sealing leads to leaking blood vessels,followed by vasogenic edema.Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death.Brain microvascular endothelial cells,together with astrocytes,pericytes,microglia,and neurons form a selective barrier,the so-called blood-brain barrier,which regulates the movement of molecules inside and outside of the brain.Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood.Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years.One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3.In this review,we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.