期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
基于PE-HMM的渡槽结构运行状态评价
1
作者 张翌娜 李紫瑜 +1 位作者 张建伟 黄锦林 《水电能源科学》 北大核心 2024年第10期140-143,157,共5页
随着远距离、高流量、大跨度渡槽工程的不断发展,渡槽运行状态监测与评价日益重要。以广东省罗定市长岗坡渡槽工程为例,基于渡槽泄流振动位移数据,提出一种基于排列熵算法(PE)和隐马尔可夫模型(HMM)的渡槽运行状态评价方法。首先,运用... 随着远距离、高流量、大跨度渡槽工程的不断发展,渡槽运行状态监测与评价日益重要。以广东省罗定市长岗坡渡槽工程为例,基于渡槽泄流振动位移数据,提出一种基于排列熵算法(PE)和隐马尔可夫模型(HMM)的渡槽运行状态评价方法。首先,运用排列熵算法和K-means法提取振动位移数据基本特征,形成HMM模型的观测状态序列。其次,运用HMM算法训练模型参数,以平均误差百分比为指标,筛选出最佳模型参数,并以该参数为初值再次训练得到渡槽运行期隐状态的概率分布。最后,结合渡槽运行期隐状态对应的分值等级及概率值,求得渡槽运行状态期望值,从而量化评价渡槽运行状态。结果表明,基于PE-HMM法的渡槽运行状态评价结果与实地勘察结论一致,可见PE-HMM法能够从渡槽振动位移数据角度出发,真实反映渡槽结构运行状态,具有较高的评判精度与工程指导意义。 展开更多
关键词 渡槽 运行状态评价 排列熵算法 隐马尔可夫模型
下载PDF
RCMNAAPE在旋转机械故障诊断中的应用
2
作者 储祥冬 戴礼军 +3 位作者 涂金洲 罗震寰 于震 秦磊 《机电工程》 CAS 北大核心 2024年第6期1039-1049,共11页
针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机... 针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机(GWO-SVM)的旋转机械故障诊断方法。首先,利用幅值感知排列熵替换了RCMPE中的排列熵,提出了RCMNAAPE,并将其用于提取旋转机械振动信号的故障特征生成特征样本;随后,采用了LS从原始的高维故障特征向量中筛选出较少的能够更准确描述故障状态的特征,构造敏感特征样本;最后,将低维的故障特征向量输入由灰狼算法优化的支持向量机中进行了训练和测试,完成了旋转机械样本的故障识别和分类,利用滚动轴承和齿轮箱故障数据集将RCMNAAPE-LS-GWO-SVM与其他故障诊断方法进行了对比分析,并开展了评估。研究结果表明:基于RCMNAAPE-LS-GWO-SVM的故障诊断方法能够有效识别旋转机械的各类故障,其识别准确率高于其他对比的故障诊断方法,其中滚动轴承故障的识别准确率达到99.33%,齿轮箱故障的识别准确率达到98.67%。虽然,该方法的特征提取效率不佳,平均特征提取时间分别为153.02 s和163.98 s,仅优于精细复合多尺度模糊熵(RCMFE),但其综合性能更加优异。 展开更多
关键词 故障识别准确率 滚动轴承 齿轮箱 精细复合多尺度归一化幅值感知排列熵 拉普拉斯分数 灰狼优化支持向量机
下载PDF
基于VMD-PE-MulitiBiLSTM的超短期风电功率预测
3
作者 陈烨烨 李瑶 李捍东 《分布式能源》 2024年第2期1-7,共7页
为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电... 为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电功率预测模型。首先,利用VMD分解算法将历史风电功率序列分解成若干个子模态分量,根据计算的PE值重构分解的子模态风电分量;然后,使用特征注意力(feature attention,FA)机制和深度残差级联网络(deep residual cascade network,DRCnet)构建MulitiBiLSTM预测模型,预测重构后的子序列;最后,重构子序列预测值,得到最终风电功率预测结果。使用贵州某风场的数据集对所提出的方法进行验证,并和其他预测模型进行对比。结果表明,使用VMD-PE-MultiBiLSTM模型能显著降低风电功率预测误差。 展开更多
关键词 风电功率超短期预测 变分模态分解(VMD) 排列熵(pe) 多层双向长短时记忆(MultiBiLSTM)
下载PDF
基于DIGWO-VMD-CMPE的轴承故障识别方法
4
作者 辛昊 鲁玉军 朱轩逸 《机电工程》 CAS 北大核心 2024年第2期205-215,共11页
针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因... 针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因子a和个体狼ω位置更新的方法将灰狼优化算法(GWO)改进为DIGWO,并利用DIGWO算法的自适应性优化VMD分解,得到了多个本征模态函数(IMFs);然后,利用复合多尺度排列熵计算IMFs的特征值,选取适当维数的特征,构建了故障特征向量;最后,利用DIGWO算法优化支持向量机(SVM)的惩罚系数C和径向基函数g,建立了DIGWO-SVM滚动轴承故障诊断分类器,并利用滚动轴承的振动数据验证了算法的有效性。研究结果表明:基于CMPE的DIGWO-SVM滚动轴承故障诊断方法能够有效地识别轴承的运行状况,识别准确率达到了99.42%,相较于PSO-SVM、SSA-SVM方法提高了7.75%、1.68%,证明了该方法的分类性能在滚动轴承故障诊断中更具优势。 展开更多
关键词 基于维度学习的改进灰狼优化算法 变分模态分解 复合多尺度排列熵 支持向量机 本征模态函数 基于维度学习的狩猎
下载PDF
基于CEEMDAN-PE-WPD和多目标优化的超短期风电功率预测方法 被引量:3
5
作者 常雨芳 杨子潇 +2 位作者 潘风 唐杨 黄文聪 《电网技术》 EI CSCD 北大核心 2023年第12期5015-5025,共11页
为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)... 为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)和多目标优化的超短期风电功率预测方法。首先,利用CEEMDAN、PE和WPD构成的信号处理方法降低原始风电信号的随机性和波动性;然后,将分解后的子分量输入到长短期记忆(long short-term memory,LSTM)神经网络,并且利用精英T分布麻雀优化算法(elite t-distribution sparrow optimization algorithm,ETSSA)优化LSTM的隐藏层单元数,提升LSTM网络的预测性能;最后,建立多目标优化损失函数,将准确率、稳定度和合格率3个优化目标同时加入到损失函数中,综合提升模型的预测性能。对内蒙古某地区风力发电场的实测数据进行实验分析结果表明,与其他经典预测方法相比,所提方法提升风电功率预测性能有显著效果,并且在不同季节风况下预测效果良好。 展开更多
关键词 超短期风电功率预测 总体平均经验模态分解 排列熵 小波包分解 长短期记忆神经 精英T分布麻雀优化算法 多目标优化
下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:2
6
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备集成经验模态分解 改进多尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
下载PDF
基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断 被引量:3
7
作者 陈爱午 王红卫 《机电工程》 CAS 北大核心 2023年第8期1157-1166,共10页
针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDA... 针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDAN的白噪声幅值权重和噪声添加次数,并对行星齿轮箱的振动信号进行了HBA-ICEEMDAN分解,得到了若干个本征模态函数,筛选出其中相关系数较大的分量进行了重构;然后,利用HWPE提取了重构低噪信号的敏感特征值,获得了故障特征向量;最后,利用GWO优化了SVM的惩罚系数和核系数,训练GWO-SVM多故障分类器,对行星齿轮箱损伤进行了识别;利用行星齿轮箱的振动数据进行实验,验证了算法的有效性。研究结果表明:结合HBA-ICEEMDAN、HWPE和GWO-SVM的行星齿轮箱故障诊断方法能够准确地识别行星齿轮箱的典型单点故障和复合故障,识别准确率达到了98.15%。相较于其他组合方法,该方法在行星齿轮箱故障诊断中更具有有效性,更具有优越性。 展开更多
关键词 齿轮传动 蜜獾算法 改进自适应噪声完备经验模态分解 层次加权排列熵 灰狼算法-优化支持向量机 行星齿轮箱 故障诊断
下载PDF
基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断 被引量:1
8
作者 张彬桥 舒勇 江雨 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1408-1421,共14页
针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自... 针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自适应优化分解参数的改进VMD方法,并通过该指标筛选分解后的本征模态函数(IMF)分量;然后,为提取更全面的故障特征,引入新的复合缩放排列熵对各有效IMF的故障特征进行量化;最后,提出一种基于鼠群优化算法(RSO)与麻雀搜索算法(SSA)的混合算法优化SDAE网络超参数,将故障特征输入优化后SDAE网络中得到分类结果。采用美国CWRU轴承数据集进行验证,实验结果表明该方法能全面稳定地提取背景噪声下的故障特征,且与其他方法相比具有更好的抗噪性能和更高的故障诊断准确率。 展开更多
关键词 变分模态分解 综合评价指标 复合缩放排列熵 混合算法 堆叠降噪自编码器
下载PDF
基于VMD-PE和优化相关向量机的短期风电功率预测 被引量:31
9
作者 武小梅 林翔 +1 位作者 谢旭泉 谢海波 《太阳能学报》 EI CAS CSCD 北大核心 2018年第11期3277-3285,共9页
针对风电功率序列非线性、非平稳性等特点,提出一种基于变分模态分解(VMD).排列熵(PE)和混沌布谷鸟搜索算法(CCS)优化相关向量机的短期风电功率预测新方法。为降低风电功率序列非平稳性和减小计算规模,首先采用变分模态分解技术(VMD),... 针对风电功率序列非线性、非平稳性等特点,提出一种基于变分模态分解(VMD).排列熵(PE)和混沌布谷鸟搜索算法(CCS)优化相关向量机的短期风电功率预测新方法。为降低风电功率序列非平稳性和减小计算规模,首先采用变分模态分解技术(VMD),将原始风电功率序列分解成一系列不同的子模态,利用排列熵(PE)分析其复杂度并重组得到子序列;然后采用CCS优化后的相关向量机(CCS.RVM)对各子序列进行提前24h预测;最后将预测结果叠加得到最终预测值,并利用某风电场实际采集数据进行仿真验证。结果表明,所提预测模型能有效提高风电功率预测的准确性。 展开更多
关键词 风电功率 预测模型 变分模态分解 相关向量机 排列熵 混沌布谷鸟搜索算法
下载PDF
基于CEEMDAN-PE和QGA-BP的短期风速预测 被引量:7
10
作者 赵辉 周杰 +1 位作者 王红君 岳有军 《电子技术应用》 2018年第12期60-64,共5页
为了提高风电场短期风速预测的精度,提出了一种基于自适应噪声的完整集成经验模态分解(CEEMDAN)-排列熵(PE)和量子遗传算法(QGA)优化BP神经网络的短期风速预测模型。首先采用CEEMDAN对原始风速时间序列进行分解,降低不同特征尺度序列间... 为了提高风电场短期风速预测的精度,提出了一种基于自适应噪声的完整集成经验模态分解(CEEMDAN)-排列熵(PE)和量子遗传算法(QGA)优化BP神经网络的短期风速预测模型。首先采用CEEMDAN对原始风速时间序列进行分解,降低不同特征尺度序列间的相互影响;其次,为了减少计算规模,对分解得到的各个分量序列分别计算排列熵,将熵值相近的分量进行叠加形成新的序列;最后,针对BP神经网络在初始化权值和阈值的选取上存在随机性的问题,采用QGA对BP参数进行优化,分别对每个新的序列进行预测并将预测结果进行叠加得到最终的预测值。实例仿真结果表明,该组合模型提高了预测的精度,减小了误差,具有实际意义和工程应用价值。 展开更多
关键词 风速预测 完整集成经验模态分解 排列熵 量子遗传算法 BP神经网络 组合模型
下载PDF
VMD-PE协同SNN的输电线路故障辨识方法 被引量:11
11
作者 付华 金岑 《电子测量与仪器学报》 CSCD 北大核心 2020年第6期86-92,共7页
针对输电线路短路故障危害大、故障辨识率较低等问题,提出一种结合变分模态分解排列熵(VMD-PE)与孪生神经网络(SNN)的故障辨识方法,利用瞬时频率均值对VMD进行参数优化,确定分解层数K,通过VMD分解故障时的三相电压,计算分解后每个分量... 针对输电线路短路故障危害大、故障辨识率较低等问题,提出一种结合变分模态分解排列熵(VMD-PE)与孪生神经网络(SNN)的故障辨识方法,利用瞬时频率均值对VMD进行参数优化,确定分解层数K,通过VMD分解故障时的三相电压,计算分解后每个分量的排列熵,将其作为故障特征量;将故障特征输入到训练好的SNN中进行相似性度量,比较两个输入样本之间的相似程度,判别出输电线路短路故障类型。通过仿真实验验证了该方法的可行性,并与其他分类方法相对比,证明了该方法的准确性和优越性。 展开更多
关键词 输电线路 故障辨识 变分模态分解(VMD) 孪生神经网络(SNN) 排列熵(pe)
下载PDF
SSA-VMD与小波分解结合的GNSS坐标时序降噪方法
12
作者 杨厚明 鲁铁定 +1 位作者 孙喜文 何锦亮 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期360-365,390,共7页
利用麻雀搜索算法(sparrow search algorithm, SSA)优化变分模态分解(VMD),然后结合小波分解(WD),提出一种GNSS坐标时间序列降噪方法IVMD-WD。利用仿真信号和10个基准站的实测数据进行GNSS坐标时间序列降噪实验。结果表明,IVMD-WD方法... 利用麻雀搜索算法(sparrow search algorithm, SSA)优化变分模态分解(VMD),然后结合小波分解(WD),提出一种GNSS坐标时间序列降噪方法IVMD-WD。利用仿真信号和10个基准站的实测数据进行GNSS坐标时间序列降噪实验。结果表明,IVMD-WD方法的降噪效果优于经验模态分解(EMD)、集合经验模态分解(EEMD)和WD,能够更加有效地剔除GNSS坐标时间序列中的噪声。 展开更多
关键词 麻雀搜索算法 变分模态分解 小波分解 多尺度排列熵 GNSS坐标时间序列
下载PDF
基于MPE和改进K⁃means算法的分接开关机械故障诊断方法 被引量:12
13
作者 马宏忠 徐艳 魏海增 《高压电器》 CAS CSCD 北大核心 2020年第8期198-204,共7页
随着有载调压变压器在电网应用的增多以及有载分接开关(on⁃load tap⁃changer,OLTC)频繁地调节,分接开关的故障率在不断增加。为更有效进行OLTC机械故障诊断,提出一种基于MPE和改进K⁃means算法的OLTC机械故障诊断方法。首先,模拟OLTC的... 随着有载调压变压器在电网应用的增多以及有载分接开关(on⁃load tap⁃changer,OLTC)频繁地调节,分接开关的故障率在不断增加。为更有效进行OLTC机械故障诊断,提出一种基于MPE和改进K⁃means算法的OLTC机械故障诊断方法。首先,模拟OLTC的不同机械故障,采集振动信号;其次,为实现非线性振动信号下OLTC的故障诊断,采用多尺度排列熵(MPE)进行OLTC机械故障状态的特征提取;再次,采用粒子群(PSO)优化的K⁃means聚类算法诊断OLTC机械故障;最后,将该方法用于OLTC的机械故障诊断,并与传统K⁃means算法以及BP网络的诊断效果进行对比。结果表明,提出的基于MPE和改进K⁃means算法适用于OLTC机械故障诊断,诊断效果优于传统K⁃means算法以及BP网络,且其稳定性较高。 展开更多
关键词 OLTC K⁃means算法 粒子群优化的K⁃means算法 多尺度排列熵
下载PDF
任务并行编程模型下排列熵算法的并行实现
14
作者 李维权 《软件工程》 2024年第2期40-43,共4页
排列熵算法随着嵌入维数的增大,运算规模将会呈平方级数增大,计算时效性问题突出,亟待解决。为此,提出一种基于任务并行编程模型的线程级并行方法,通过任务并行运行系统(StarPU)将密集型计算划分为多个独立的任务,再由调度器将任务调度... 排列熵算法随着嵌入维数的增大,运算规模将会呈平方级数增大,计算时效性问题突出,亟待解决。为此,提出一种基于任务并行编程模型的线程级并行方法,通过任务并行运行系统(StarPU)将密集型计算划分为多个独立的任务,再由调度器将任务调度到不同的CPU上执行,实现排列熵算法的并行化。基于StarPU的排列熵并行算法与串行程序相比较,加速比为23.79倍,相较于OpenMP(一种用于共享内存并行系统的并行计算方案),在分配28个线程时,加速比为1.17倍,结果表明该方法能够有效实现排列熵算法的加速执行。 展开更多
关键词 排列熵算法 任务并行编程模型 OpeNMP StarPU
下载PDF
基于SVD-PE与神经网络的滚动轴承故障诊断模型 被引量:2
15
作者 王琛 《自动化与仪表》 2021年第6期85-89,共5页
针对滚动轴承在运行过程中出现的多种故障问题,提出一种新型的滚动轴承故障诊断方法,该方法通过奇异值分解算法对振动数据进行处理,通过去除振动数据中噪音,获取较为纯净的数据信息。然后通过排列熵算法对数据特征进行分析,分析后的特... 针对滚动轴承在运行过程中出现的多种故障问题,提出一种新型的滚动轴承故障诊断方法,该方法通过奇异值分解算法对振动数据进行处理,通过去除振动数据中噪音,获取较为纯净的数据信息。然后通过排列熵算法对数据特征进行分析,分析后的特征数据信息输入至反向传播算法,对故障种类数据进一步处理,再利用轴承故障诊断分析模型进行高效地诊断。试验表明,通过采用该研究的SVD-PE算法模型,故障样本平均正确率为91.75%,提高了故障诊断的平均值。 展开更多
关键词 滚动轴承 奇异值分解 排列熵 反向传播算法 故障诊断
下载PDF
基于改进多尺度均值排列熵和参数优化SVM的齿轮箱故障诊断方法
16
作者 郭盼盼 张文斌 +1 位作者 崔奔 徐晗 《机械传动》 北大核心 2024年第4期154-161,共8页
当齿轮箱传动系统发生故障时,不同振动信号的多尺度均值排列熵(Multi-scale Mean Per⁃mutation Entropy,MMPE)与其故障状态有一定的对应关系,但MMPE提取故障特征的效果取决于参数的选取。因此,提出了一种基于改进MMPE和参数优化支持向量... 当齿轮箱传动系统发生故障时,不同振动信号的多尺度均值排列熵(Multi-scale Mean Per⁃mutation Entropy,MMPE)与其故障状态有一定的对应关系,但MMPE提取故障特征的效果取决于参数的选取。因此,提出了一种基于改进MMPE和参数优化支持向量机(Support Vector Machine,SVM)的齿轮箱故障识别方法。首先,引用粒子群优化(Particle Swarm Optimization,PSO)算法对MMPE的参数进行优化;其次,对采集到的齿轮振动信号计算其MMPE;最后,采用PSO-SVM对齿轮的故障状态进行了识别。试验结果验证了所提方法的有效性且具有较高的准确率。 展开更多
关键词 多尺度均值排列熵 粒子群优化算法 支持向量机 故障诊断 齿轮
下载PDF
基于VMD-WPE和SSA-ELM的短期风电功率预测研究 被引量:7
17
作者 刘栋 魏霞 +1 位作者 王维庆 叶家豪 《太阳能学报》 EI CAS CSCD 北大核心 2022年第12期360-367,共8页
针对风电功率序列非线性、非平稳性特点,提出一种变分模态分解(VMD)-加权排列熵(WPE)和麻雀算法(SSA)优化极限学习机(ELM)的混合风电功率预测模型。首先,采用VMD技术将原始序列分解为多个固有模态分量,再采用WPE技术将各分量重组成若干... 针对风电功率序列非线性、非平稳性特点,提出一种变分模态分解(VMD)-加权排列熵(WPE)和麻雀算法(SSA)优化极限学习机(ELM)的混合风电功率预测模型。首先,采用VMD技术将原始序列分解为多个固有模态分量,再采用WPE技术将各分量重组成若干个复杂度差异较大的子序列。然后,利用启发式SSA算法对ELM的参数进行优化,建立风电功率预测优化模型。最后,采用西北某风电场实际数据对所提模型进行验证。结果表明,与其他模型相比,所提模型提高了预测性能。 展开更多
关键词 风电功率预测 变分模态分解 加权排列熵 麻雀算法 极限学习机
下载PDF
CEEMDAN-PE-TFPF降噪法在齿轮故障诊断中的应用 被引量:4
18
作者 白丽丽 韩振南 任家骏 《机械设计与制造》 北大核心 2020年第1期80-83,88,共5页
针对齿轮故障诊断过程中,大量噪声使得故障特征难以完全提取的情况,提出了一种完整的自适应噪声集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)、排列熵(Permutation Entropy,PE)和时... 针对齿轮故障诊断过程中,大量噪声使得故障特征难以完全提取的情况,提出了一种完整的自适应噪声集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)、排列熵(Permutation Entropy,PE)和时频峰值滤波(Time-Frequency Peak Filtering,TFPF)相结合的去噪方法。由于TFPF方法在窗长问题上的局限性,引用CEEMDAN和PE对此进行改进,使信号在噪声抑制和信号保真方面得到了很好的权衡。首先利用CEEMDAN算法得到原始信号的本征模态函数(Intrinsic Mode Functions,IMFs),计算每个IMF的PE值来判断IMF是否需要滤波,然后针对不同的IMF选择不同的窗口长度进行TFPF滤波,最后将滤波后的IMFs和剩余IMFs重构得到最终的降噪信号。通过模拟仿真信号和实测齿轮信号验证了该降噪方法的可行性,且降噪后的信号可以有效地揭示故障的特征信息。最后与多种降噪方法对比,体现了所提方法的有效性和优越性。 展开更多
关键词 CEEMDAN 排列熵 时频峰值滤波 齿轮 降噪
下载PDF
基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法研究 被引量:6
19
作者 彭亚雄 刘广进 +2 位作者 苏莹 陈春晖 刘运思 《振动与冲击》 EI CSCD 北大核心 2022年第13期135-141,共7页
实测矿山爆破地震波信号含有大量高频噪声,一定程度上掩盖了真实信号特征,不利于爆破有害效应分析。为了有效降低实测信号的噪声成分,提出了基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法。将原信号进行变分模态分解(intrinsic mo... 实测矿山爆破地震波信号含有大量高频噪声,一定程度上掩盖了真实信号特征,不利于爆破有害效应分析。为了有效降低实测信号的噪声成分,提出了基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法。将原信号进行变分模态分解(intrinsic mode function,VMD)获得本征模态函数(variational mode decomposition,IMF),利用能量差参数ξ自适应确定模态数K,对IMF分量进行多尺度排列熵(multi-scale permutation entropy,MPE)的随机性检测,准确区分出真实IMF和噪声IMF,去除原信号中的噪声IMF以达到降噪目的。对3组实测矿山爆破地震波信号进行降噪处理,结果表明该模型能够较好地去除高频噪声,保留了信号真实成分;其降噪效果均优于EEMD-MPE、CEEMDAN-MPE算法,验证了自适应VMD-MPE降噪方法的有效性。 展开更多
关键词 矿山爆破 地震波信号 自适应VMD算法 多尺度排列熵
下载PDF
基于SAD-PE的自动睡眠分期模型
20
作者 李令环 奚峥皓 +1 位作者 曹乐 张文艳 《传感器与微系统》 CSCD 北大核心 2022年第11期138-142,共5页
针对众多睡眠分期模型在N1期分类准确度低的问题,提出一种基于符号化振幅差值和排列熵结合的睡眠自动分期模型。首先,对睡眠脑电基于符号化振幅差值(SAD)计算排列熵(PE);其次,将重构子向量的均值作为权重加入到排列熵计算,得到符号化振... 针对众多睡眠分期模型在N1期分类准确度低的问题,提出一种基于符号化振幅差值和排列熵结合的睡眠自动分期模型。首先,对睡眠脑电基于符号化振幅差值(SAD)计算排列熵(PE);其次,将重构子向量的均值作为权重加入到排列熵计算,得到符号化振幅差值排列熵(SAD-PE),并给出影响SAD-PE特异性的尺度因子的计算模型;然后,对5 760个单通道睡眠脑电提取多域特征,并利用ReliefF算法计算32个特征的贡献度并降维;最后,利用随机森林进行睡眠分期。所提方法在睡眠五分类模式下,整体准确度保持较高水平,尤其对较难区分的N1期,分类准确度比用Energy Features&RNN模型提高了9.05%,为分析N1期与REM期相关的异态睡眠提供了新的思路,具有较好的应用前景。 展开更多
关键词 睡眠自动分期 排列熵 符号化振幅差值 单通道
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部