Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demon...Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.展开更多
Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers....Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.展开更多
Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A...Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33 Mn0.33Ti0.6703(A = Ca or Sr and Ln = rare earth) were found to have orthorhombic symmetry with the space group Pnrna, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Cao.67Ln0.33Mn0.33Ti0.6703 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.展开更多
Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and s...Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction, Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox reaction decreased over La0.8Sr0.2Fe0.9Co0. 1O3 oxide, while LaFeO3 and La0.8Sr0.2FeO3 exhibited excellent structural stability and continuous oxygen supply.展开更多
In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x ...In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x Mn) perovskite oxides instead of molecular oxygen was investigated. The redox circulation between 11% O2/Ar flow and 11% CH4/He flow at 900℃ shows that methane can be oxidized to CO and H2 with a selectivity of over 90.7% using the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite oxides in an appropriate reaction condition, while the lost lattice x oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite x oxides instead of molecular oxygen to react with methane to synthesis gas in the redox mode.展开更多
The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER pr...The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.展开更多
Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential ...Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.展开更多
Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite ox...Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite oxides,(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2) with n=5,8,and 12(LSTNn) for application as catalysts of CO_(2) electrolysis with the exsolution of Ni nanoparticles through a simple in-situ growth method.It is found that the density,size,and distribution of exsolved Ni nanoparticles are determined by the number of n in LSTNn due to the different stack structures of TiO_6 octahedra along the c axis.The Ni doping in LSTNn significantly improved the electrochemical activity by increasing oxygen vacancies,and the Ni metallic nanoparticles afford much more active sites.The results show that LSTNn cathodes can successfully be manipulated the activity by controlling both the n number and Ni exsolution.Among these LSTNn(n=5,8,and 12),LSTN8 renders a higher activity for electrolysis of CO_(2) with a current density of 1.50A cm^(-2)@2.0 V at 800℃ It is clear from these results that the number of n in(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2)with Ni-doping is a key factor in controlling the electrochemical performance and catalytic activity in SOEC.展开更多
Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidat...Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity.展开更多
The double perovskite oxides LaSrFeMo0.9Co0.1O6 was prepared by co-precipitation method and sol-gel method. The title catalysts were calcined at 800°C and characterized by XRD H2-TPR, SEM and TG-DTA techniques. T...The double perovskite oxides LaSrFeMo0.9Co0.1O6 was prepared by co-precipitation method and sol-gel method. The title catalysts were calcined at 800°C and characterized by XRD H2-TPR, SEM and TG-DTA techniques. The catalytic activity was evaluated for methane combustion. The specific surface area of them was calculated by BET model. The samples exhibit significant catalytic activity for methane combustion at 800°C. Upon calcination at 800°C, the LaSrFeMo0.9Co0.1O6 prepared by sol-gel method retains a specific surface area of 24 m2.g-1 and shows an excellent activity for methane combustion (the conversion of 10% and 90% are obtained at 505°C and 660°C, respectively).展开更多
The performance of La2NiO4 perovskite catalysts,prepared using a citric acid complexation method,for the steam reforming of ethanol was studied.The catalysts were characterized by X-ray diffractometry(XRD),specific su...The performance of La2NiO4 perovskite catalysts,prepared using a citric acid complexation method,for the steam reforming of ethanol was studied.The catalysts were characterized by X-ray diffractometry(XRD),specific surface area measurements(BET),thermogravimetric analysis(TGA)and scanning electron microscopy(SEM).The experimental results show that the calcination temperature and the amount of citric acid(CA)have a significant influence on the characteristics of the catalysts and their catalytic activity.Among the catalysts tested,the La2NiO4 catalyst calcined at 700 ℃withn(La):n(Ni):n(CA)of 2:1:3 exhibits the best activity and excellent stability as well as very low coke formation.展开更多
We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO3-type manganese oxides, A3B2OT-type two-layered perovskite oxides, and A2B'B''O6-type ordered double-perovskite oxides). Magnetic...We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO3-type manganese oxides, A3B2OT-type two-layered perovskite oxides, and A2B'B''O6-type ordered double-perovskite oxides). Magnetic entropy changes larger than those of gadolinium can be observed in polycrystalline La1-xCaxMnO3 and alkali-metal (Na or K) doped La0.8Ca0.2MnO3 perovskite-type manganese oxides. The large magnetic entropy change produced by an abrupt reduction of magnetization is attributed to the anomalous thermal expansion at the Curie temperature. Considerable mag- netic entropy changes can also be observed in two-layered perovskites Lal.6Cal.4Mn207 and La2.5-xK0.5+xMn2O7+6 (0 〈 x 〈 0.5), and double-perovskite Ba2Fe1+xMol-xO6 (0 〈 x 〈 0.3) near their respective Curie temperatures. Com- pared with rare earth metals and their alloys, the perovskite-type oxides are lower in cost, and they exhibit higher chemical stability and higher electrical resistivity, which together favor lower eddy-current heating. They are potential magnetic refrigerants at high temperatures, especially near room temperature.展开更多
Ba0.5Sr0.5Co0.8Fe0.2O3-delta and Ba0.5Sr0.5Co0.8Ti0.2O3-delta oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied ...Ba0.5Sr0.5Co0.8Fe0.2O3-delta and Ba0.5Sr0.5Co0.8Ti0.2O3-delta oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied during the reaction of methane oxidation. The pre-treatment with methane has different effect on the catalytic activities of both the oxides. The methane pre-treatment has not resulted in the change of the catalytic activity of BSCFO owing to its excellent reversibility of the perovskite structure resulting from the excellent synergistic interaction between Co and Fe in the oxide. However, the substitution with Ti on Fe-site in the lattice makes the methane pre-treatment have an obvious influence on the activity of the formed BSCTO oxide.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
For carbon-free electrochemical fuel formation,the electrochemical cell must be powered by renewable energy.Obtaining solar-powered H_(2) fuel from water typically requires multiple photovoltaic cells and/or junctions...For carbon-free electrochemical fuel formation,the electrochemical cell must be powered by renewable energy.Obtaining solar-powered H_(2) fuel from water typically requires multiple photovoltaic cells and/or junctions to drive the water splitting reaction.Because of the lower thermodynamic requirements to oxidize ammonia compared to water,solar cells with smaller open circuit voltages can provide the required potential for ammonia splitting.In this work,a single perovskite solar cell with an open-circuit potential of 1.08 V is coupled to a 2-electrode electrochemical cell employing hybrid electroanodes functionalized with Ru-based molecular catalysts.The device is active for more than 30 min,producing N_(2) and H_(2) in a 1:2.9 ratio with 89%faradaic efficiency with no external applied bias.This work illustrates that hydrogen production from ammonia can be driven by conventional semiconductors.展开更多
The benefits of perovskite oxides include their low cost,customizable composition,ordered atomic structure,and extremely flexible electronic structure.They are the ideal substitute for precious metal catalysts in vari...The benefits of perovskite oxides include their low cost,customizable composition,ordered atomic structure,and extremely flexible electronic structure.They are the ideal substitute for precious metal catalysts in various electrocatalytic reactions.However,the initial activity of perovskite oxides is often quite limited,which is extremely related to their crystal structure and electronic structure.In this regard,component regulation is the simplest and most effective strategy to increase their stability and catalytic activity.In this review,we briefly outline the recent progress in the modulating component of perovskite oxides to enhance their catalytic properties.The outline was categorized according to the sites in the ABO3-type perovskite structure,including A-site,B-site,and O-site regulation.Finally,potential research directions aimed at modulating of perovskite oxide constituents are discussed.展开更多
The systematic advances in the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs)have been driven by the developments of perovskite materials,electron transport layer(ETL)materials,and inter...The systematic advances in the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs)have been driven by the developments of perovskite materials,electron transport layer(ETL)materials,and interfacial passivation between the relevant layers.While zinc oxide(ZnO)is a promising ETL in thin film photovoltaics,it is still highly desirable to develop novel synthetic methods that allow both fine-tuning the versatility of ZnO nanomaterials and improving the ZnO/perovskite interface.Among various inorganic and organic additives,zwitterions have been effectively utilized to passivate the perovskite films.In this vein,we develop novel,well-characterized betaine-coated ZnO QDs and use them as an ETL in the planar n-i-p PSC architecture,combining the ZnO QDs-based ETL with the ZnO/perovskite interface passivation by a series of ammonium halides(NH_(4)X,where X=F,Cl,Br).The champion device with the NH4F passivation achieves one of the highest performances reported for ZnO-based PSCs,exhibiting a maximum PCE of~22%with a high fill factor of 80.3%and competitive stability,retaining~78%of its initial PCE under 1 Sun illumination with maximum power tracking for 250 h.展开更多
Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural co...Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.展开更多
The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesir...The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesirable redox reactions cause severe interfacial non-radiative recombination and open-circuit voltage(Voc)loss.Herein,a series of self-assembled molecules(SAMs)are employed to bind,bridge,and stabilize the NiO_(x)/perovskite interface by regulating the electrostatic potential.Based on systematically theoretical and experimental studies,4-pyrazolecarboxylic acid(4-PCA)is proven as an efficient molecule to simultaneously passivate the NiO_(x)and perovskite surface traps,release the interfacial tensile stress as well as quench the detrimental interface redox reactions,thus effectively suppressing the interfacial non-radiative recombination and enhancing the quality of perovskite crystals.Consequently,the PSCs with 4-PCA treatment exhibited an eminently increased Voc,leading to a significant increase in power conversion efficiency from 21.28%to 23.77%.Furthermore,the unencapsulated devices maintain 92.6%and 81.3%of their initial PCEs after storing in air with a relative humidity of 20%–30%for 1000 h and heating at 65℃for 500 h in a N_(2)-filled glovebox,respectively.展开更多
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
基金This study was supported by the National Research Foundation of Korea(NRF-2021R1C1C1010233)funded by the Korean government(MSIT)+1 种基金This research was also supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant(No.G032542411)funded by the Korea Ministry of Trade,Industry,and Energy(MOTIE).
文摘Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.
基金the SINOPEC Research and Development Project(No.JR22094).
文摘Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.
基金Foundation ite ms:Project supported bythe Grant-in-Aidfor Scientific Research (C) (18560662) bythe Japan Societyfor the Promotion of Science
文摘Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33 Mn0.33Ti0.6703(A = Ca or Sr and Ln = rare earth) were found to have orthorhombic symmetry with the space group Pnrna, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Cao.67Ln0.33Mn0.33Ti0.6703 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.
基金the Chinese Natural Science Foundation(Project No.20306016)
文摘Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction, Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox reaction decreased over La0.8Sr0.2Fe0.9Co0. 1O3 oxide, while LaFeO3 and La0.8Sr0.2FeO3 exhibited excellent structural stability and continuous oxygen supply.
文摘In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x Mn) perovskite oxides instead of molecular oxygen was investigated. The redox circulation between 11% O2/Ar flow and 11% CH4/He flow at 900℃ shows that methane can be oxidized to CO and H2 with a selectivity of over 90.7% using the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite oxides in an appropriate reaction condition, while the lost lattice x oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite x oxides instead of molecular oxygen to react with methane to synthesis gas in the redox mode.
基金financial supports from the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202126)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB17020400)。
文摘The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts.
基金supported by the National Natural Science Foundation of China(Project No.21908106 and 21878158)the Jiangsu Natural Science Foundation(Project No.BK20190682)+2 种基金the Program for Jiangsu Specially Appointed Professorsthe Funding from State Key Laboratory of Materials-Oriented Chemical Engineering(Project No.ZK201808)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.
基金supported by the National Natural Science Foundation of China (51877173)the Key R&D Project of Shaanxi Province (2023-YBGY-057)+1 种基金the State Key Laboratory of Electrical Insulation and Power Equipment (EIPE22314, EIPE22306)the Natural Science Basic Research Program of Shaanxi (2023-JC-QN-0483)。
文摘Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite oxides,(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2) with n=5,8,and 12(LSTNn) for application as catalysts of CO_(2) electrolysis with the exsolution of Ni nanoparticles through a simple in-situ growth method.It is found that the density,size,and distribution of exsolved Ni nanoparticles are determined by the number of n in LSTNn due to the different stack structures of TiO_6 octahedra along the c axis.The Ni doping in LSTNn significantly improved the electrochemical activity by increasing oxygen vacancies,and the Ni metallic nanoparticles afford much more active sites.The results show that LSTNn cathodes can successfully be manipulated the activity by controlling both the n number and Ni exsolution.Among these LSTNn(n=5,8,and 12),LSTN8 renders a higher activity for electrolysis of CO_(2) with a current density of 1.50A cm^(-2)@2.0 V at 800℃ It is clear from these results that the number of n in(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2)with Ni-doping is a key factor in controlling the electrochemical performance and catalytic activity in SOEC.
基金The financial support of the National Natural Science Foundation of China(51406208,51406214)supported by the Science&Technology Research Project of Guangdong Province(2015A010106009)the support of Key Laboratory of Renewable Energy,Chinese Academy of Sciences(Y607j51001)
文摘Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity.
文摘The double perovskite oxides LaSrFeMo0.9Co0.1O6 was prepared by co-precipitation method and sol-gel method. The title catalysts were calcined at 800°C and characterized by XRD H2-TPR, SEM and TG-DTA techniques. The catalytic activity was evaluated for methane combustion. The specific surface area of them was calculated by BET model. The samples exhibit significant catalytic activity for methane combustion at 800°C. Upon calcination at 800°C, the LaSrFeMo0.9Co0.1O6 prepared by sol-gel method retains a specific surface area of 24 m2.g-1 and shows an excellent activity for methane combustion (the conversion of 10% and 90% are obtained at 505°C and 660°C, respectively).
文摘The performance of La2NiO4 perovskite catalysts,prepared using a citric acid complexation method,for the steam reforming of ethanol was studied.The catalysts were characterized by X-ray diffractometry(XRD),specific surface area measurements(BET),thermogravimetric analysis(TGA)and scanning electron microscopy(SEM).The experimental results show that the calcination temperature and the amount of citric acid(CA)have a significant influence on the characteristics of the catalysts and their catalytic activity.Among the catalysts tested,the La2NiO4 catalyst calcined at 700 ℃withn(La):n(Ni):n(CA)of 2:1:3 exhibits the best activity and excellent stability as well as very low coke formation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174132)the National Basic Research Program of China (Grant Nos. 2011CB922102 and 2012CB932304)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO3-type manganese oxides, A3B2OT-type two-layered perovskite oxides, and A2B'B''O6-type ordered double-perovskite oxides). Magnetic entropy changes larger than those of gadolinium can be observed in polycrystalline La1-xCaxMnO3 and alkali-metal (Na or K) doped La0.8Ca0.2MnO3 perovskite-type manganese oxides. The large magnetic entropy change produced by an abrupt reduction of magnetization is attributed to the anomalous thermal expansion at the Curie temperature. Considerable mag- netic entropy changes can also be observed in two-layered perovskites Lal.6Cal.4Mn207 and La2.5-xK0.5+xMn2O7+6 (0 〈 x 〈 0.5), and double-perovskite Ba2Fe1+xMol-xO6 (0 〈 x 〈 0.3) near their respective Curie temperatures. Com- pared with rare earth metals and their alloys, the perovskite-type oxides are lower in cost, and they exhibit higher chemical stability and higher electrical resistivity, which together favor lower eddy-current heating. They are potential magnetic refrigerants at high temperatures, especially near room temperature.
文摘Ba0.5Sr0.5Co0.8Fe0.2O3-delta and Ba0.5Sr0.5Co0.8Ti0.2O3-delta oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied during the reaction of methane oxidation. The pre-treatment with methane has different effect on the catalytic activities of both the oxides. The methane pre-treatment has not resulted in the change of the catalytic activity of BSCFO owing to its excellent reversibility of the perovskite structure resulting from the excellent synergistic interaction between Co and Fe in the oxide. However, the substitution with Ti on Fe-site in the lattice makes the methane pre-treatment have an obvious influence on the activity of the formed BSCTO oxide.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金Financial support from Ministerio de Ciencia e Innovación through projects PID2022-140143OB-I00(MCIN/AEI/10.13039/501100011033)and SO-CEX2019-000925-S(MCIN/AEI/10.13039/5011000110)supported by Marie Sk?odowska-Curie Actions Individual Fellowship grant funding to AMB,grant 101031365-SolTIMEthe support from the MSCA-COFUND I2:ICIQ Impulsion(GA 801474)。
文摘For carbon-free electrochemical fuel formation,the electrochemical cell must be powered by renewable energy.Obtaining solar-powered H_(2) fuel from water typically requires multiple photovoltaic cells and/or junctions to drive the water splitting reaction.Because of the lower thermodynamic requirements to oxidize ammonia compared to water,solar cells with smaller open circuit voltages can provide the required potential for ammonia splitting.In this work,a single perovskite solar cell with an open-circuit potential of 1.08 V is coupled to a 2-electrode electrochemical cell employing hybrid electroanodes functionalized with Ru-based molecular catalysts.The device is active for more than 30 min,producing N_(2) and H_(2) in a 1:2.9 ratio with 89%faradaic efficiency with no external applied bias.This work illustrates that hydrogen production from ammonia can be driven by conventional semiconductors.
基金acknowledge support from the National Natural Science Foundation of China(Nos.21922105,21931001,22201111,and 22271124)the National Key R&D Program of China(2021YFA1501101)+4 种基金the National Natural Science Foundation of Gansu Province(22JR5RA470)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province(2019ZX-04)the 111 Project(B20027).We also acknowledge support from the Fundamental Research Funds for the Central Universities(lzujbky-2021-sp62)the support of the Natural Science Foundation of China(NSFC)(No.21771156)the Early Career Scheme(ECS)fund(Grant PolyU253026/16P)from the Research Grant Council(RGC)in Hong Kong.
文摘The benefits of perovskite oxides include their low cost,customizable composition,ordered atomic structure,and extremely flexible electronic structure.They are the ideal substitute for precious metal catalysts in various electrocatalytic reactions.However,the initial activity of perovskite oxides is often quite limited,which is extremely related to their crystal structure and electronic structure.In this regard,component regulation is the simplest and most effective strategy to increase their stability and catalytic activity.In this review,we briefly outline the recent progress in the modulating component of perovskite oxides to enhance their catalytic properties.The outline was categorized according to the sites in the ABO3-type perovskite structure,including A-site,B-site,and O-site regulation.Finally,potential research directions aimed at modulating of perovskite oxide constituents are discussed.
基金the support from the European Union’s Horizon 2020 research and innovation program under the Marie Sk■odowska-Curie[Grant agreement No.711859]the Polish Ministry of Science and Higher Education from the co-funded project[Grant agreement no.3549/H2020/COFUND2016/2]+4 种基金the support of King Abdulaziz City for Science and Technology(KACST),Saudi Arabiathe financial support by the National Science Centre[Grant MAESTRO 11 No.2019/34/A/ST5/00416]the European Union’s Horizon 2020 Research and Innovation program under the Marie Sk■odowska-Curie[Grant agreement No.843453]the European Union’s Horizon 2020 research and innovation program under Grant Agreement 884444financial support by the Marie Sk■odowska-Curie Action(H2020MSCA-IF-2020,[Project No.101024237])
文摘The systematic advances in the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs)have been driven by the developments of perovskite materials,electron transport layer(ETL)materials,and interfacial passivation between the relevant layers.While zinc oxide(ZnO)is a promising ETL in thin film photovoltaics,it is still highly desirable to develop novel synthetic methods that allow both fine-tuning the versatility of ZnO nanomaterials and improving the ZnO/perovskite interface.Among various inorganic and organic additives,zwitterions have been effectively utilized to passivate the perovskite films.In this vein,we develop novel,well-characterized betaine-coated ZnO QDs and use them as an ETL in the planar n-i-p PSC architecture,combining the ZnO QDs-based ETL with the ZnO/perovskite interface passivation by a series of ammonium halides(NH_(4)X,where X=F,Cl,Br).The champion device with the NH4F passivation achieves one of the highest performances reported for ZnO-based PSCs,exhibiting a maximum PCE of~22%with a high fill factor of 80.3%and competitive stability,retaining~78%of its initial PCE under 1 Sun illumination with maximum power tracking for 250 h.
基金supported by National Natural Science Foundation of China Project (Grant No. 52374133, 52262034)the Guangdong Basic and Applied Basic Research Committee Foundation (Grant No. KCXST20221021111601003)Shenzhen Science and Technology Innovation Commission Foundation (Grant No. KCXST20221021111601003)
文摘Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.
基金financially supported by the National Natural Science Foundation of China (U22A2078)Fundamental Research Funds for the Central Universities (2022CDJQY-007)
文摘The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesirable redox reactions cause severe interfacial non-radiative recombination and open-circuit voltage(Voc)loss.Herein,a series of self-assembled molecules(SAMs)are employed to bind,bridge,and stabilize the NiO_(x)/perovskite interface by regulating the electrostatic potential.Based on systematically theoretical and experimental studies,4-pyrazolecarboxylic acid(4-PCA)is proven as an efficient molecule to simultaneously passivate the NiO_(x)and perovskite surface traps,release the interfacial tensile stress as well as quench the detrimental interface redox reactions,thus effectively suppressing the interfacial non-radiative recombination and enhancing the quality of perovskite crystals.Consequently,the PSCs with 4-PCA treatment exhibited an eminently increased Voc,leading to a significant increase in power conversion efficiency from 21.28%to 23.77%.Furthermore,the unencapsulated devices maintain 92.6%and 81.3%of their initial PCEs after storing in air with a relative humidity of 20%–30%for 1000 h and heating at 65℃for 500 h in a N_(2)-filled glovebox,respectively.
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.