In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polar...In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polarizer.To address this inefficiency and optimize energy utilization,this study presents a high-performance device designed for RGB polarized emissions.The device employs an array of semipolar blueμLEDs with inherent polarization capabilities,coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals.The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission,while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions,due to their high dielectric constant.The resulting device achieved RGB polarization degrees of 0.26,0.48,and 0.38,respectively,and exhibited a broad color gamut,reaching 137.2%of the NTSC standard and 102.5%of the Rec.2020 standard.When compared to a device utilizing c-plane LEDs for excitation,the current approach increased the intensity of light transmitted through the polarizer by 73.6%.This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of...The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.展开更多
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ...Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts.展开更多
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai...A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.展开更多
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat...The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.展开更多
Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to po...Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance.Herein,a chlorofullerene,C_(60)Cl_(6),with six chlorine attached to the C_(60)cage,is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film.The chemical interactions between C_(60)Cl_(6)and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film.It is also revealed that the C_(60)Cl_(6)located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films,especially the oxidation of Sn^(2+)to Sn^(4+).As a result,the C_(60)Cl_(6)-based device yields a remarkably improved device efficiency from 10.03%to 13.30%with enhanced stability.This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials.展开更多
The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminesc...The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminescence.Doping and high pressure are employed to tailor the optical properties of Cs_(2)NaInCl_(6).Herein,Sb^(3+)doped Cs_(2)NaInCl_(6)(Sb^(3+):Cs_(2)NaInCl_(6)) was synthesized and it exhibits blue emission with a photoluminescence quantum yield of up to 37.3%.Further,by employing pressure tuning,a blue stable emission under a very wide range from 2.7 GPa to 9.8 GPa is realized in Sb^(3+):Cs_(2)NaInCl_(6).Subsequently,the emission intensity of Sb^(3+):Cs_(2)NaInCl_(6) experiences a significant increase(3.3 times)at 19.0 GPa.It is revealed that the pressure-induced distinct emissions can be attributed to the carrier self-trapping and detrapping between Cs_(2)NaInCl_(6) and Sb^(3+).Notably,the lattice compression in the cubic phase inevitably modifies the band gap of Sb^(3+):Cs_(2)NaInCl_(6).Our findings provide valuable insights into effects of the high pressure in further boosting unique emission characteristics but also offer promising opportunities for development of doped double perovskites with enhanced optical functionalities.展开更多
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
The black-phase formamidine-lead iodide(α-FAPbI_(3)),boasting an optimal bandgap of 1.5 eV,stands out as a premier choice for narrow-bandgap perovskite solar cells(PSCs),achieving a certified power conversion efficie...The black-phase formamidine-lead iodide(α-FAPbI_(3)),boasting an optimal bandgap of 1.5 eV,stands out as a premier choice for narrow-bandgap perovskite solar cells(PSCs),achieving a certified power conversion efficiency(PCE)of 26.1%[1−5].This impressive performance hinges on the orderly and homogeneous crystallization ofα-phase pure FAPbI_(3),facilitated by coordinating solvents such as dimethyl sulfoxide(DMSO)to form intermediates like PbI_(2)-DMSO complex(D-complex).The D-complex plays a pivotal role in crystallization thermodynamics,enabling the direct formation of α-FAPbI_(3) without the photoinactiveδ-phase[6−9].However,DMSO,a commonly used coordinating solvent,is highly hygroscopic and prone to hydration upon moisture exposure.This tendency leads to incomplete perovskite crystallization and accelerates the transformation of α-FAPbI_(3) into itsδ-phase[2,10].Consequently,the best-performing α-FAPbI_(3)PSCs must be processed in an inert atmosphere with strictly controlled relative humidity(RH)and suffers from relatively poor reproducibility.Given the hard-to-control atmosphere at industrial scale,it is challenging yet imperative to eliminate the negative effects stemming from hygroscopic coordinating solvents[11−13].展开更多
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ...Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.展开更多
Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC devi...Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC device elec-troluminescent(EL)efficiency contained a mistake,leading to an inaccurate quantity value.The device’s maxim-um EL efficiency constitutes not‘~120 klm/W’but‘4.3 lm/W’instead.Correction details are listed below.展开更多
Lead halide perovskite nanocrystals(PNCs)have received great research interests due to their excellent optoelectronic properties.However,high temperature,inert gas protection and insulating long-chain ligands are used...Lead halide perovskite nanocrystals(PNCs)have received great research interests due to their excellent optoelectronic properties.However,high temperature,inert gas protection and insulating long-chain ligands are used during the conventional hot-injection synthesis of PNCs,which limits their practical applications.In this work,we first develop a simple and scalable polar-solvent-free method for the preparation of full-component APbX_(3)(A=Cs,methylammonium(MA),formamidinium(FA),X=Cl,Br,I)PNCs under ambient condition.Through an exothermic reaction between butylamine(BA)and propionic acid(PA)short ligands,the PbX_(2) precursors could be well dissolved without use of any polar solvent.Meanwhile,the relatively lower growth rate of PNCs in our room-temperature reaction enables us to modulate the synthetic procedure to enhance the scalability(40-fold)and achieve large-scale synthesis.The resultant short ligands passivated PNC inks are compatible with varying solution depositing technique like spray coating for large-area film.Finally,we showcase that adopting the as-prepared MAPbI_(3) PNC inks,a self-powered photodetector is fabricated and shows a high photoresponsivity.These results demonstrate that our ambient-condition synthetic approach can accelerate the preparation of tunable and ready-to-use PNCs towards commercial optoelectronic applications.展开更多
This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analys...This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analyses,strong coupling between excitons of perovskite and cavity photons is revealed,indicating the formation of polaritons in the perovskite microcavity.Besides,it is found that an external optical Stark pulse can induce energy shifts of excitons proportional to the pulse intensity,which modifies the dispersion characteristics of the polaritons.展开更多
Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dime...Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.展开更多
The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables eff...The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables efficient charge transportation and less trap states,which are eventually translated into enhanced device performance.Seed-assisted growth(SAG)is a potential technique for depositing highly-crystallized perovskite films with preferential crystal orientation among the numerous approaches related to crystallization modulation.In this review,we summarize the recent advances in the SAG technique for both one-step and two-step processed perovskite films.Additionally,seeding at the buried interface and on the top surface are also introduced.We present different seeds and their corresponding seeding mechanism in detail,such as inorganic nanomaterials,organic ammoniums,alkali metal halides,and perovskite seeds.Finally,challenges and perspectives are proposed to investigate the potential expansion of seeding engineering in high-performance PSCs,particularly large-area devices.展开更多
Metal exsolution engineering has been regarded as a promising strategy for activating intrinsically inert perovskite oxide catalysts toward efficient oxygen evolution reaction.Traditional metal exsolution processes on...Metal exsolution engineering has been regarded as a promising strategy for activating intrinsically inert perovskite oxide catalysts toward efficient oxygen evolution reaction.Traditional metal exsolution processes on perovskites are often achieved by using the reducing hydrogen gas;however,this is not effective for the relatively stable phase,such as Ruddlesden-Popper perovskite oxides.To address this issue,triphenylphosphine is proposed to be a reduction promotor for accelerating the reduction and migration of the target metal atoms,aiming to achieve the effective exsolution of metallic species from Ruddlesden-Popper-type parent perovskites.Upon oxygen evolution reaction,these exsolved metallic aggregates are reconstructed into oxyhydroxides as the real active centers.After further modification by lowpercentage iridium oxide nanoclusters,the optimal catalyst delivered an overpotential as low as 305 mV for generating the density of 10 mA cm^(-2),outperforming these reported noble metal-containing perovskite-based alkaline oxygen evolution reaction electrocatalysts.This work provides a potential approach to activate catalytically inert oxides through promoting surface metal exsolution and explores a novel class of Ruddlesden-Poppertype oxides for electrocatalytic applications.展开更多
As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perov...As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes ...Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes to the exacerbation of carrier recombination,and the defects between the perovskite and electron transport layer(ETL)interfaces significantly decrease the efficiency of the devices.In this study,a bifunctional surface passivation approach is proposed by applying a thioacetamide(TAA)surfactant on the mesoporous TiO_(2)interface.The results demonstrate that TAA molecules could interact with TiO_(2),thereby diminishing the oxygen vacancy defects.Additionally,the amino group and sulfur atoms in TAA molecules act as Lewis base to effectively passivate the uncoordinated Pb^(2+)in perovskite and improve the morphology of perovskite,and decrease the trap-state density of perovskite.The TAA passivation mechanism improves the alignment of energy levels between TiO_(2)and perovskite,facilitating electron transport and reducing carrier recombination.Consequently,the TAA-passivated device achieved a champion power conversion efficiency(PCE)of 17.86%with a high fill factor(FF)of 79.16%and an open-circuit voltage(V_(OC))of 0.971 V.This investigation presents a feasible strategy for interfacial passivation of the ETL to further improve the efficiency of PM-PSCs.展开更多
基金the National Natural Science Foundation of China(62274138)Natural Science Foundation of Fujian Province of China(2023J06012)+2 种基金Science and Technology Plan Project in Fujian Province of China(2021H0011)Fundamental Research Funds for the Central Universities(20720230029)Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone(3502ZCQXT2022005).
文摘In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polarizer.To address this inefficiency and optimize energy utilization,this study presents a high-performance device designed for RGB polarized emissions.The device employs an array of semipolar blueμLEDs with inherent polarization capabilities,coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals.The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission,while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions,due to their high dielectric constant.The resulting device achieved RGB polarization degrees of 0.26,0.48,and 0.38,respectively,and exhibited a broad color gamut,reaching 137.2%of the NTSC standard and 102.5%of the Rec.2020 standard.When compared to a device utilizing c-plane LEDs for excitation,the current approach increased the intensity of light transmitted through the polarizer by 73.6%.This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金supported by the National Key Research and Development Program of China(2022YFB4200301)the National Natural Science Foundation of China(52202216)the Natural Science Foundation of Sichuan Province(24NSFSC1601).
文摘The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability.
基金financially supported by the Natural Science Foundation of China(Grant Nos.52372226,52173263,62004167)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant Nos.2022JM-315,2023-JC-QN-0643)+4 种基金the National Key R&D Program of China(Grant No.2022YFB3603703)the Qinchuangyuan High-level Talent Project of Shaanxi(Grant No.QCYRCXM-2022-219)the Ningbo Natural Science Foundation(Grant No.2022J061)the Key Research and Development Program of Shaanxi(Grant No.2023GXLH-091)the Shccig-Qinling Program and the Fundamental Research Funds for the Central Universities。
文摘Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts.
基金the financial support from Shanxi Province Science and Technology Department(20201101012,202101060301016)the support from the APRC Grant of the City University of Hong Kong(9380086)+5 种基金the TCFS Grant(GHP/018/20SZ)MRP Grant(MRP/040/21X)from the Innovation and Technology Commission of Hong Kongthe Green Tech Fund(202020164)from the Environment and Ecology Bureau of Hong Kongthe GRF grants(11307621,11316422)from the Research Grants Council of Hong KongGuangdong Major Project of Basic and Applied Basic Research(2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(2019B121205002).
文摘A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.
基金supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (MSIT),Korea (NRF-2021R1C1C1009200 and 2023R1A2C3007358)supported by the Defense Challengeable Future Technology Program of the Agency for Defense Development,Republic of Koreasupported by Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT) (20016588)funded by Ministry of Trade,Industry and Energy (MOTIE).
文摘The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.
基金financially supported by the National Natural Science Foundation of China(51902110,U21A2078,and 22179042)Natural Science Foundation of Fujian Province(2020J01064 and 2020J06021)Scientific Research Funds of Huaqiao University,and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(ZQN-806,ZQNPY607)
文摘Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance.Herein,a chlorofullerene,C_(60)Cl_(6),with six chlorine attached to the C_(60)cage,is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film.The chemical interactions between C_(60)Cl_(6)and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film.It is also revealed that the C_(60)Cl_(6)located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films,especially the oxidation of Sn^(2+)to Sn^(4+).As a result,the C_(60)Cl_(6)-based device yields a remarkably improved device efficiency from 10.03%to 13.30%with enhanced stability.This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1400200 and2021YFA0718701)the National Natural Science Foundation of China(Grant Nos.U2032127,11904322,12104411,12174347)+4 种基金the Natural Science Foundation of Henan province of China(Grant No.202300410356)the China Postdoctoral Science Foundation(Grant Nos.2019M652560 and 2020M682326)the CAS Interdisciplinary Innovation Team(Grant No.JCTD-2019-01)the Postdoctoral Research Grant in Henan Province(Grant No.1902013)the Science Foundation for Highlevel Talents of Wuyi University(Grant No.2021AL019)。
文摘The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminescence.Doping and high pressure are employed to tailor the optical properties of Cs_(2)NaInCl_(6).Herein,Sb^(3+)doped Cs_(2)NaInCl_(6)(Sb^(3+):Cs_(2)NaInCl_(6)) was synthesized and it exhibits blue emission with a photoluminescence quantum yield of up to 37.3%.Further,by employing pressure tuning,a blue stable emission under a very wide range from 2.7 GPa to 9.8 GPa is realized in Sb^(3+):Cs_(2)NaInCl_(6).Subsequently,the emission intensity of Sb^(3+):Cs_(2)NaInCl_(6) experiences a significant increase(3.3 times)at 19.0 GPa.It is revealed that the pressure-induced distinct emissions can be attributed to the carrier self-trapping and detrapping between Cs_(2)NaInCl_(6) and Sb^(3+).Notably,the lattice compression in the cubic phase inevitably modifies the band gap of Sb^(3+):Cs_(2)NaInCl_(6).Our findings provide valuable insights into effects of the high pressure in further boosting unique emission characteristics but also offer promising opportunities for development of doped double perovskites with enhanced optical functionalities.
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.
基金support from the National Natural Science Foundation of China(Grant Nos.62205154 and 62288102)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY221112).
文摘The black-phase formamidine-lead iodide(α-FAPbI_(3)),boasting an optimal bandgap of 1.5 eV,stands out as a premier choice for narrow-bandgap perovskite solar cells(PSCs),achieving a certified power conversion efficiency(PCE)of 26.1%[1−5].This impressive performance hinges on the orderly and homogeneous crystallization ofα-phase pure FAPbI_(3),facilitated by coordinating solvents such as dimethyl sulfoxide(DMSO)to form intermediates like PbI_(2)-DMSO complex(D-complex).The D-complex plays a pivotal role in crystallization thermodynamics,enabling the direct formation of α-FAPbI_(3) without the photoinactiveδ-phase[6−9].However,DMSO,a commonly used coordinating solvent,is highly hygroscopic and prone to hydration upon moisture exposure.This tendency leads to incomplete perovskite crystallization and accelerates the transformation of α-FAPbI_(3) into itsδ-phase[2,10].Consequently,the best-performing α-FAPbI_(3)PSCs must be processed in an inert atmosphere with strictly controlled relative humidity(RH)and suffers from relatively poor reproducibility.Given the hard-to-control atmosphere at industrial scale,it is challenging yet imperative to eliminate the negative effects stemming from hygroscopic coordinating solvents[11−13].
基金the financial support of National Key Research and Development Program of China(Grant No.2023YFB4202503)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21A2072)+7 种基金Natural Science Foundation of China(Grant No.62274099)Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Science Foundation(No.2020T130317)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)Key R&D Program of Hebei Province(No.19214301D)provided by the Haihe Laboratory of Sustainable Chemical Transformationsthe Fundamental Research Funds for the Central Universities,Nankai University.
文摘Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.
文摘Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC device elec-troluminescent(EL)efficiency contained a mistake,leading to an inaccurate quantity value.The device’s maxim-um EL efficiency constitutes not‘~120 klm/W’but‘4.3 lm/W’instead.Correction details are listed below.
基金financially supported by the National Key Research and Development Program of China(No.2023YFE0210000)the National Natural Science Foundation of China(Nos.52261145696,52073198)+5 种基金the China National Postdoctoral Program for Innovative Talents(No.BX20230255)the Natural Science Foundation of Jiangsu Province(No.BK20211598)the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB405)the Science and Technology Program of Suzhou(No.ST202219)the“111”projectthe Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University。
文摘Lead halide perovskite nanocrystals(PNCs)have received great research interests due to their excellent optoelectronic properties.However,high temperature,inert gas protection and insulating long-chain ligands are used during the conventional hot-injection synthesis of PNCs,which limits their practical applications.In this work,we first develop a simple and scalable polar-solvent-free method for the preparation of full-component APbX_(3)(A=Cs,methylammonium(MA),formamidinium(FA),X=Cl,Br,I)PNCs under ambient condition.Through an exothermic reaction between butylamine(BA)and propionic acid(PA)short ligands,the PbX_(2) precursors could be well dissolved without use of any polar solvent.Meanwhile,the relatively lower growth rate of PNCs in our room-temperature reaction enables us to modulate the synthetic procedure to enhance the scalability(40-fold)and achieve large-scale synthesis.The resultant short ligands passivated PNC inks are compatible with varying solution depositing technique like spray coating for large-area film.Finally,we showcase that adopting the as-prepared MAPbI_(3) PNC inks,a self-powered photodetector is fabricated and shows a high photoresponsivity.These results demonstrate that our ambient-condition synthetic approach can accelerate the preparation of tunable and ready-to-use PNCs towards commercial optoelectronic applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974071 and 62375040)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analyses,strong coupling between excitons of perovskite and cavity photons is revealed,indicating the formation of polaritons in the perovskite microcavity.Besides,it is found that an external optical Stark pulse can induce energy shifts of excitons proportional to the pulse intensity,which modifies the dispersion characteristics of the polaritons.
基金supported by the Federal Program'Priority 2030'and NSFC(Project 62350610272)A.K.Samusev acknowledges Deutsche Forschungsgemeinschaft-project No.529710370。
文摘Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.
基金support from the 111 Project(B21005)the National Natural Science Foundation of China(Grant No.62174103)the National University Research Fund(GK202309020).
文摘The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables efficient charge transportation and less trap states,which are eventually translated into enhanced device performance.Seed-assisted growth(SAG)is a potential technique for depositing highly-crystallized perovskite films with preferential crystal orientation among the numerous approaches related to crystallization modulation.In this review,we summarize the recent advances in the SAG technique for both one-step and two-step processed perovskite films.Additionally,seeding at the buried interface and on the top surface are also introduced.We present different seeds and their corresponding seeding mechanism in detail,such as inorganic nanomaterials,organic ammoniums,alkali metal halides,and perovskite seeds.Finally,challenges and perspectives are proposed to investigate the potential expansion of seeding engineering in high-performance PSCs,particularly large-area devices.
基金supported by Australian Research Council Discovery Projects(DP230101625 and DP200103568)Australian Research Council Future Fel owships(FT180100387 and FT160100281)QUT ECR Scheme Grant(no.2020001179)
文摘Metal exsolution engineering has been regarded as a promising strategy for activating intrinsically inert perovskite oxide catalysts toward efficient oxygen evolution reaction.Traditional metal exsolution processes on perovskites are often achieved by using the reducing hydrogen gas;however,this is not effective for the relatively stable phase,such as Ruddlesden-Popper perovskite oxides.To address this issue,triphenylphosphine is proposed to be a reduction promotor for accelerating the reduction and migration of the target metal atoms,aiming to achieve the effective exsolution of metallic species from Ruddlesden-Popper-type parent perovskites.Upon oxygen evolution reaction,these exsolved metallic aggregates are reconstructed into oxyhydroxides as the real active centers.After further modification by lowpercentage iridium oxide nanoclusters,the optimal catalyst delivered an overpotential as low as 305 mV for generating the density of 10 mA cm^(-2),outperforming these reported noble metal-containing perovskite-based alkaline oxygen evolution reaction electrocatalysts.This work provides a potential approach to activate catalytically inert oxides through promoting surface metal exsolution and explores a novel class of Ruddlesden-Poppertype oxides for electrocatalytic applications.
基金supported by the National Natural Science Foundation of China(Grant No.52102266,12204167)the China Postdoctoral Science Foundation(2020M680861)+4 种基金the support from the Department of Science and Technology-Science and Engineering Research Board(DST-SERB),Government of India(project no.SRG/2020/000258)CSIR-Indian Institute of Chemical Technology,Hyderabadsupported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A5A1032539,2022R1C1C1008282)Industrial Strategic Technology Development Program-Alchemist Project(1415180859,Chiral perovskite LED smart contact lens based hyper vision metaverse)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)Korea Evaluation Institute of Industrial Technology(KEIT,Korea).
文摘As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金funded by the Yunnan Yunling Scholars Project,the National Natural Science Foundation of China(No.51562038)the Young-Middle-Aged Academic and Technical Leaders Reserve Talent Project in Yunnan Province(No.202005AC160015)the Yunnan Basic Applied Research Project(No.202101AT070013).
文摘Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes to the exacerbation of carrier recombination,and the defects between the perovskite and electron transport layer(ETL)interfaces significantly decrease the efficiency of the devices.In this study,a bifunctional surface passivation approach is proposed by applying a thioacetamide(TAA)surfactant on the mesoporous TiO_(2)interface.The results demonstrate that TAA molecules could interact with TiO_(2),thereby diminishing the oxygen vacancy defects.Additionally,the amino group and sulfur atoms in TAA molecules act as Lewis base to effectively passivate the uncoordinated Pb^(2+)in perovskite and improve the morphology of perovskite,and decrease the trap-state density of perovskite.The TAA passivation mechanism improves the alignment of energy levels between TiO_(2)and perovskite,facilitating electron transport and reducing carrier recombination.Consequently,the TAA-passivated device achieved a champion power conversion efficiency(PCE)of 17.86%with a high fill factor(FF)of 79.16%and an open-circuit voltage(V_(OC))of 0.971 V.This investigation presents a feasible strategy for interfacial passivation of the ETL to further improve the efficiency of PM-PSCs.