Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t...We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.展开更多
This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneo...This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%- 40% humidity.展开更多
Subject Code:E02With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Li Chilin(李驰麟)from Shanghai Institute of Ceramics,Chinese Academy of Sciences reported ...Subject Code:E02With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Li Chilin(李驰麟)from Shanghai Institute of Ceramics,Chinese Academy of Sciences reported that a cubic perovskite fluoride can serve as open framework cathode for high-rate展开更多
Hybrid organic-inorganic halide perovskite material has been considered as a potential candidate for various optoelectronic applications. However, their high sensitivity to the environment hampers the actual applicati...Hybrid organic-inorganic halide perovskite material has been considered as a potential candidate for various optoelectronic applications. However, their high sensitivity to the environment hampers the actual application.Hence the technology replacing the organic part of the hybrid solar cells needs to be developed. Herein, we fabricated fullyinorganic carbon-based perovskite CsPbBr_3 solar cells via a sequential deposition method with a power conversion efficiency of 2.53% and long-time stability over 20 d under ambient air conditions without any encapsulation. An evolution process from tetragonal CsPb_2Br_5 to CsPb_2Br_5-CsPbBr_3 composites to quasi-cubic CsPbBr_3 was found, which was investigated by scanning electron microscopy, X-ray diffraction spectra, UV-vis absorption spectra and Fourier transform infrared spectroscopy. Detailed evolution process was studied to learn more information about the formation process before10 min. Our results are helpful to the development of inorganic perovskite solar cells and the CsPb_2Br_5 based optoelectronic devices.展开更多
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金supported by the HK Innovation and Technology Fund (ITS/004/14)the HK-RGC General Research Funds (GRE No. HKUST 606511)
文摘We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.
文摘This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%- 40% humidity.
文摘Subject Code:E02With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Li Chilin(李驰麟)from Shanghai Institute of Ceramics,Chinese Academy of Sciences reported that a cubic perovskite fluoride can serve as open framework cathode for high-rate
基金supported by the National Basic Research Program of China (2016YFA0202400 and 2015CB932200)the National Natural Science Foundation of China (21403247)+2 种基金Distinguished Youth Foundation of Anhui Province (1708085J09)the Fundamental Research Funds for the Central Universities (2017XS079)the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY003)
文摘Hybrid organic-inorganic halide perovskite material has been considered as a potential candidate for various optoelectronic applications. However, their high sensitivity to the environment hampers the actual application.Hence the technology replacing the organic part of the hybrid solar cells needs to be developed. Herein, we fabricated fullyinorganic carbon-based perovskite CsPbBr_3 solar cells via a sequential deposition method with a power conversion efficiency of 2.53% and long-time stability over 20 d under ambient air conditions without any encapsulation. An evolution process from tetragonal CsPb_2Br_5 to CsPb_2Br_5-CsPbBr_3 composites to quasi-cubic CsPbBr_3 was found, which was investigated by scanning electron microscopy, X-ray diffraction spectra, UV-vis absorption spectra and Fourier transform infrared spectroscopy. Detailed evolution process was studied to learn more information about the formation process before10 min. Our results are helpful to the development of inorganic perovskite solar cells and the CsPb_2Br_5 based optoelectronic devices.