The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary ...The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the orthorhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attributed to the deficiency of O^2-, when Ti2O3 was involved in the formation of perovskite.展开更多
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ...Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.展开更多
A repeated interdiffusion method is described for phase-stable and high-quality (FA,MA)PbI3 film. The crys- tallization and growth of the perovskite films can be well controlled by adjusting the reactant concentrati...A repeated interdiffusion method is described for phase-stable and high-quality (FA,MA)PbI3 film. The crys- tallization and growth of the perovskite films can be well controlled by adjusting the reactant concentrations. With this method, dense, smooth perovskite films with large crystals have been obtained. Finally, a PCE of 16.5% as well as a steady-state efficiency of 16.3% is achieved in the planar perovskite solar cell.展开更多
The replaced site of Eu^(2+) ion is dependent on the electronegativity difference of the cations in complex fluorides.In the mixed fluoride KMgF_3:Eu^(2+),Eu^(2+) ion occupies K^+ site,its emission spectrum is a sharp...The replaced site of Eu^(2+) ion is dependent on the electronegativity difference of the cations in complex fluorides.In the mixed fluoride KMgF_3:Eu^(2+),Eu^(2+) ion occupies K^+ site,its emission spectrum is a sharp line and its valence-state is stable.展开更多
In this work,we demonstrate that an organometallic perovskite(OP)single crystal for effective photodetection can be grown on a gold(Au)-decorated substrate using liquid phase epitaxy.The covered gold could both contro...In this work,we demonstrate that an organometallic perovskite(OP)single crystal for effective photodetection can be grown on a gold(Au)-decorated substrate using liquid phase epitaxy.The covered gold could both control the shape of the epitaxial layer and act as its electrodes.An MAPbCl3 single crystal and an MAPbBr1.5Cl1.5 single crystal were used as the substrate and the epitaxial layer,respectively.The device,with an Au-perovskite-Au structure,can be fully characterized.Due to the high-quality epitaxial layer,the maximum external quantum efficiency(EQE)value is over 60%under the voltage of20 V.In addition,the response speed can reach 200 and 500 ns(ns)rise and fall,respectively.Our work provides an effective and promising method to fabricate efficient perovskite-based photodetectors.展开更多
ZnO single crystal was used as the substrate to study the effect of ZnO crystal plane polarity on the morphology and structure of CH_3NH_3PbI_3(MAPbI_3) perovskite film and carrier transport properties,which is mean...ZnO single crystal was used as the substrate to study the effect of ZnO crystal plane polarity on the morphology and structure of CH_3NH_3PbI_3(MAPbI_3) perovskite film and carrier transport properties,which is meaningful for improving ZnO-based perovskite solar cell. It is found that perovskite thin film has small grain size(about 190 nm) and high coverage rate on the O-face of ZnO single crystal,and the dominant exposed crystal plane of perovskite film is(110) plane. While the MAPbI_3 thin film has large grain size(about 1.03 μm) and low coverage rate on the Zn-face,and the(022) plane is dominantly exposed for the perovskite film. The injection of photogenerated electrons from MAPbI_3 film into the O-face of ZnO single crystal is faster and more effective than that to Zn-face. It is supposed that O-face is more suitable for ZnO single crystal based perovskite cell fabrication than Zn-face.展开更多
Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime pr...Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime product(μτ),and long carrier diffusion length.However,suppressing the inherent defects in perovskites and overcoming the ion migration primarily caused by these defects remains a challenge.This study proposes a facile process for dipping Cs0.05FA0.9MA0.05PbI3 SCs synthesized by a solution-based inverse temperature crystallization method into a 2-phenylethylammonium iodide(PEAI)solution to reduce the number of defects,inhibit ion migration,and increase x-ray sensitivity.Compared to conventional spin coating,this simple dipping process forms a two-dimensional PEA2PbI4 layer on all SC surfaces without further treatment,effectively passivating all surfaces of the inherently defective SCs and minimizing ion migration.As a result,the PEAI-treated perovskite SC-based x-ray detector achieves a record x-ray sensitivity of 1.3×10^(5)μC Gyair^(-1) cm^(-2) with a bias voltage of 30 V at realistic clinical dose rates of 1–5 mGy s^(-1)(peak potential of 110 kVp),which is 6 times more sensitive than an untreated SC-based detector and 3 orders of magnitude more sensitive than a commercialα-Se-based detector.Furthermore,the PEAI-treatedperovskite SC-based x-ray detector exhibits a low detection limit(73 nGy s^(-1)),improved x-ray response,and clear x-ray images by a scanning method,highlighting the effectiveness of the PEAI dipping approach for fabricating next-generation x-ray detectors.展开更多
Organic-inorganic halide perovskite single crystals(SCs)are promising materials for detecting ionizing radiation owing to their outstanding photoelectric conversion capability and inexpensive solution processability.H...Organic-inorganic halide perovskite single crystals(SCs)are promising materials for detecting ionizing radiation owing to their outstanding photoelectric conversion capability and inexpensive solution processability.However,the accuracy and stability of the detectors have been limited due to the charge traps and defects in SCs,especially when operated under high-precision photon-counting mode for energy spectrum acquisition.Here,we proposed a trap freezing deactivation route,which obviously suppressed dark current and noise by up to 97%and 92%,respectively.Furthermore,the bulk ion migration effect was essential for the ability to instantly self-heal defects induced by radiation damage at temperatures down to30C.Consequently,the detector exhibits a record high energy resolution of 7.5%at 59.5 keV for 241Amγ-ray source,which is the best solution-processed semiconductor radiation detectors at the same energy range.In addition,the detector maintains over 90%of its initial performance after 9 months of storage when tested in the air.Our results will represent a revision of the paradigm that high-spectral-resolution and robust radiation detectors can only be realized with high temperature grown inorganic semiconductor single crystals.展开更多
Halide perovskite single crystals(HPSCs)provide a unique platform to study the optoelectronic properties of such emerging semiconductor materials,while the temperature induced crystal growth method often has an increa...Halide perovskite single crystals(HPSCs)provide a unique platform to study the optoelectronic properties of such emerging semiconductor materials,while the temperature induced crystal growth method often has an increased solute integration speed and/or unavoidable solute consumption,resulting in a soaring or slumping crystal growth rate of HPSCs.Here,we developed a universal and facile solvent-vola tilization-limited-growth(SVG)strategy to finely control the crystal growth rate by the fine-control-valve for high quality crystal grown through solution processes.The grown HPSCs by SVG method exhibited a record low trap density of 2.8×10^(8)cm^(-3)and a high charge carrier mobility-lifetime product(μτproduct)of 0.021 cm2/V,indicating the excellent crystal quality.The crystal surface defects were further passivated by oxygen suppliers as Lewis base,which led to a reduction of surface leakage current by two times when using for low dose rate X-ray detection.Such HPSC X-ray detector displayed a high sensitivity of 1274μC/(Gyair cm^(2))with a lowest detectable dose rate of 0.56μGyair/s under 120 keV hard X-ray.Further applications including alloy composition analysis and metal flaw detection by HPSC detectors were also demonstrated,which not only shows the bright future for product quality inspection and non-destructive materials analysis,but also paves the way for growing high quality single crystals and fabricating polycrystalline films.展开更多
Highly-sensitive and stable ozone and hydrogen sensing elements were fabricated based on well-crystalline rounded cube-shaped CsPbBr 3 microcrystals,synthesized by a facile solution process per-formed under ambient co...Highly-sensitive and stable ozone and hydrogen sensing elements were fabricated based on well-crystalline rounded cube-shaped CsPbBr 3 microcrystals,synthesized by a facile solution process per-formed under ambient conditions.It is shown that such elements demonstrate enhanced room tem-perature gas sensing ability compared to the previously reported metal halide and oxide-based ones.Electrical measurements performed on these sensing components revealed high sensitivity to ultra-low ozone and hydrogen concentrations,namely 4 ppb and 1 ppm respectively,as well as a remarkable repeatability,even after a few months of storage in ambient conditions.Both ozone and hydrogen sensors were self-activated,as they did not require the use of UV or heating external stimuli to operate,and exhibited fast detection and short restoration times.All such attractive properties along with the simple fabrication process could provide an easy,efficient and low-cost technology for the realization of future gas sensing devices.展开更多
Suitable electron transport layers are essential for high performance planar perovskite heterojunction solar cells. Here, we use ZnO electron transport layer sputtered under oxygen-rich atmosphere at room temperature ...Suitable electron transport layers are essential for high performance planar perovskite heterojunction solar cells. Here, we use ZnO electron transport layer sputtered under oxygen-rich atmosphere at room temperature to decrease the hydroxide and then suppress decomposition of perovskite films. The perovskite films with improved crystallinity and morphology are achieved. Besides, on the ZnO substrate fabricated at oxygen-rich atmosphere, open-circuit voltage of the CH_3NH_3PbI_3-based perovskite solar cells increased by 0.13 V.A high open-circuit voltage of 1.16 V provides a good prospect for the perovskite-based tandem solar cells. The ZnO sputtered at room temperature can be easily fabricated industrially on a large scale, therefore, compatible to flexible and tandem devices. Those properties make the sputtered ZnO films promising as electron transport materials for perovskite solar cells.展开更多
P-xylene(p-C_(8)H_(10))is extremely harmful and dangerous to human health due to high toxicity and strong carcinogenicity.Exploring sensitive material to effectively detect p-xylene is of importance.In this paper,pero...P-xylene(p-C_(8)H_(10))is extremely harmful and dangerous to human health due to high toxicity and strong carcinogenicity.Exploring sensitive material to effectively detect p-xylene is of importance.In this paper,perovskite single crystal(C_(4)H_(9)NH_(3))_(2)PbI_(4) has been successfully synthesized via solution method.The obtained product was analyzed by single crystal X-ray diffraction.With the space group Pbca,orthorhombic(C_(4)H_(9)NH_(3))_(2)PbI_(4) layered perovskite structure consists of an extended two-dimensional network of corner-sharing PbI_(6) octahedron.Single layer perovskite sheets of distorted PbI_(6) octahedron alternated with protonated n-butylammonium cation bilayers,which offers many advantages and provides the possibility of forming a gas sensor device based on the change of resistances.Density functional theory(DFT)simulations regarding the adsorption energy revealed that this organicinorganic hybrid perovskite compound has excellent selectivity toward p-xylene compared with other gases including C_(2)H_(5)OH,C_(6)H_(6),CH_(2)Cl_(2),HCHO,CH_(3)COCH_(3) and C_(7)H_(8).The calculation of electron density,density of states and electron density difference showed the sensing mechanism of p-C_(8)H_(10) is mainly derived from physical adsorption-desorption in view of electron transfer.展开更多
Mixed conducting perovskite oxide SrCo_(0.9)Ta_(0.1)O_(3-δ)(SCT) is synthesized by solid-state reaction method.The activation in the initial stage of oxygen permeation through the SCT membrane is investigated...Mixed conducting perovskite oxide SrCo_(0.9)Ta_(0.1)O_(3-δ)(SCT) is synthesized by solid-state reaction method.The activation in the initial stage of oxygen permeation through the SCT membrane is investigated.The results show that the activation in the initial stage of oxygen permeation has activate-memory,the first activation can only help to reduce active time of the next cycles,but it is helpless to increase the final oxygen permeation flux.XRD characterization shows that the imperfect perovskite phase structure is gradually improved and the crystal lattice has made some self-adjustment under the permeation conditions,therefore,the oxygen permeation flux of SCT disk membrane increases gradually and till it reaches a steady state.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51090383)the Fundamental Research Funds for the Central Universities of China(No.CDJZR12130049)
文摘The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the orthorhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attributed to the deficiency of O^2-, when Ti2O3 was involved in the formation of perovskite.
基金the financial support of National Key Research and Development Program of China(Grant No.2023YFB4202503)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21A2072)+7 种基金Natural Science Foundation of China(Grant No.62274099)Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Science Foundation(No.2020T130317)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)Key R&D Program of Hebei Province(No.19214301D)provided by the Haihe Laboratory of Sustainable Chemical Transformationsthe Fundamental Research Funds for the Central Universities,Nankai University.
文摘Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.
基金supported by the National Key Basic Research Program (No.2012CB932903)Natural Science Foundation of China (Nos. 51402348,51421002,91433205,21173260,11474333 and 91233202)
文摘A repeated interdiffusion method is described for phase-stable and high-quality (FA,MA)PbI3 film. The crys- tallization and growth of the perovskite films can be well controlled by adjusting the reactant concentrations. With this method, dense, smooth perovskite films with large crystals have been obtained. Finally, a PCE of 16.5% as well as a steady-state efficiency of 16.3% is achieved in the planar perovskite solar cell.
基金Project supported by the National Natural Science Foundation of China
文摘The replaced site of Eu^(2+) ion is dependent on the electronegativity difference of the cations in complex fluorides.In the mixed fluoride KMgF_3:Eu^(2+),Eu^(2+) ion occupies K^+ site,its emission spectrum is a sharp line and its valence-state is stable.
基金the National Key R&D Program of China(2017YFC0111500 and 2016YFB0401600)the National Natural Science Foundation Project(61775034,61571124,and 61674029)+1 种基金the Taizhou Key Technology R&D Program(TS201716)the NSFC Research Fund for International Young Scientists(61750110537).
文摘In this work,we demonstrate that an organometallic perovskite(OP)single crystal for effective photodetection can be grown on a gold(Au)-decorated substrate using liquid phase epitaxy.The covered gold could both control the shape of the epitaxial layer and act as its electrodes.An MAPbCl3 single crystal and an MAPbBr1.5Cl1.5 single crystal were used as the substrate and the epitaxial layer,respectively.The device,with an Au-perovskite-Au structure,can be fully characterized.Due to the high-quality epitaxial layer,the maximum external quantum efficiency(EQE)value is over 60%under the voltage of20 V.In addition,the response speed can reach 200 and 500 ns(ns)rise and fall,respectively.Our work provides an effective and promising method to fabricate efficient perovskite-based photodetectors.
基金supported by the National Natural Science Foundation of China(Nos.91333207,61427901 and U1505252)
文摘ZnO single crystal was used as the substrate to study the effect of ZnO crystal plane polarity on the morphology and structure of CH_3NH_3PbI_3(MAPbI_3) perovskite film and carrier transport properties,which is meaningful for improving ZnO-based perovskite solar cell. It is found that perovskite thin film has small grain size(about 190 nm) and high coverage rate on the O-face of ZnO single crystal,and the dominant exposed crystal plane of perovskite film is(110) plane. While the MAPbI_3 thin film has large grain size(about 1.03 μm) and low coverage rate on the Zn-face,and the(022) plane is dominantly exposed for the perovskite film. The injection of photogenerated electrons from MAPbI_3 film into the O-face of ZnO single crystal is faster and more effective than that to Zn-face. It is supposed that O-face is more suitable for ZnO single crystal based perovskite cell fabrication than Zn-face.
基金Agency for Defense Development,Grant/Award Number:UI220006TDDefense Acquisition Program Administration(DAPA),Grant/Award Number:912765601Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:RS-2023-00237035。
文摘Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime product(μτ),and long carrier diffusion length.However,suppressing the inherent defects in perovskites and overcoming the ion migration primarily caused by these defects remains a challenge.This study proposes a facile process for dipping Cs0.05FA0.9MA0.05PbI3 SCs synthesized by a solution-based inverse temperature crystallization method into a 2-phenylethylammonium iodide(PEAI)solution to reduce the number of defects,inhibit ion migration,and increase x-ray sensitivity.Compared to conventional spin coating,this simple dipping process forms a two-dimensional PEA2PbI4 layer on all SC surfaces without further treatment,effectively passivating all surfaces of the inherently defective SCs and minimizing ion migration.As a result,the PEAI-treated perovskite SC-based x-ray detector achieves a record x-ray sensitivity of 1.3×10^(5)μC Gyair^(-1) cm^(-2) with a bias voltage of 30 V at realistic clinical dose rates of 1–5 mGy s^(-1)(peak potential of 110 kVp),which is 6 times more sensitive than an untreated SC-based detector and 3 orders of magnitude more sensitive than a commercialα-Se-based detector.Furthermore,the PEAI-treatedperovskite SC-based x-ray detector exhibits a low detection limit(73 nGy s^(-1)),improved x-ray response,and clear x-ray images by a scanning method,highlighting the effectiveness of the PEAI dipping approach for fabricating next-generation x-ray detectors.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LR22F040003)the National Natural Science Foundation of China(No.62075191,No.52003235,No.22179050,No.21875089,and No.61721005)+3 种基金China Postdoctoral Science Foundation(2022T150251)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZ-FR003)the Fundamental Research Funds for the Central Universities(226-2022-00200)Zhejiang University K.P.Chao's High Technology Development Foundation(2022RC008).
文摘Organic-inorganic halide perovskite single crystals(SCs)are promising materials for detecting ionizing radiation owing to their outstanding photoelectric conversion capability and inexpensive solution processability.However,the accuracy and stability of the detectors have been limited due to the charge traps and defects in SCs,especially when operated under high-precision photon-counting mode for energy spectrum acquisition.Here,we proposed a trap freezing deactivation route,which obviously suppressed dark current and noise by up to 97%and 92%,respectively.Furthermore,the bulk ion migration effect was essential for the ability to instantly self-heal defects induced by radiation damage at temperatures down to30C.Consequently,the detector exhibits a record high energy resolution of 7.5%at 59.5 keV for 241Amγ-ray source,which is the best solution-processed semiconductor radiation detectors at the same energy range.In addition,the detector maintains over 90%of its initial performance after 9 months of storage when tested in the air.Our results will represent a revision of the paradigm that high-spectral-resolution and robust radiation detectors can only be realized with high temperature grown inorganic semiconductor single crystals.
基金the Fundamental Research Funds for the Central Universities,Jilin UniversityJilin University Scinece and Technology Innovation Research Team(2017TD-06)。
文摘Halide perovskite single crystals(HPSCs)provide a unique platform to study the optoelectronic properties of such emerging semiconductor materials,while the temperature induced crystal growth method often has an increased solute integration speed and/or unavoidable solute consumption,resulting in a soaring or slumping crystal growth rate of HPSCs.Here,we developed a universal and facile solvent-vola tilization-limited-growth(SVG)strategy to finely control the crystal growth rate by the fine-control-valve for high quality crystal grown through solution processes.The grown HPSCs by SVG method exhibited a record low trap density of 2.8×10^(8)cm^(-3)and a high charge carrier mobility-lifetime product(μτproduct)of 0.021 cm2/V,indicating the excellent crystal quality.The crystal surface defects were further passivated by oxygen suppliers as Lewis base,which led to a reduction of surface leakage current by two times when using for low dose rate X-ray detection.Such HPSC X-ray detector displayed a high sensitivity of 1274μC/(Gyair cm^(2))with a lowest detectable dose rate of 0.56μGyair/s under 120 keV hard X-ray.Further applications including alloy composition analysis and metal flaw detection by HPSC detectors were also demonstrated,which not only shows the bright future for product quality inspection and non-destructive materials analysis,but also paves the way for growing high quality single crystals and fabricating polycrystalline films.
基金This work was supported by the FLAG-ERA grant PeroGaS by General Secretariat for Research and Innovation(GSRI)(MIS 5070514)K.B.acknowledges E.U.H2020 Research and Innovation Program under Grant Agreement N820677Greek State Schol-arships Foundation(IKY)through the operational Program«Human Resources Development,Education and Lifelong Learning»in the context of the project“Reinforcement of Postdoctoral Researchers-2nd Cycle”(MIS-5033021).
文摘Highly-sensitive and stable ozone and hydrogen sensing elements were fabricated based on well-crystalline rounded cube-shaped CsPbBr 3 microcrystals,synthesized by a facile solution process per-formed under ambient conditions.It is shown that such elements demonstrate enhanced room tem-perature gas sensing ability compared to the previously reported metal halide and oxide-based ones.Electrical measurements performed on these sensing components revealed high sensitivity to ultra-low ozone and hydrogen concentrations,namely 4 ppb and 1 ppm respectively,as well as a remarkable repeatability,even after a few months of storage in ambient conditions.Both ozone and hydrogen sensors were self-activated,as they did not require the use of UV or heating external stimuli to operate,and exhibited fast detection and short restoration times.All such attractive properties along with the simple fabrication process could provide an easy,efficient and low-cost technology for the realization of future gas sensing devices.
基金supported by the International Cooperation Projects of the Ministry of Science and Technology (2014DFE60170)the National Natural Science Foundation of China (61474065 and 61674084)+2 种基金Tianjin Research Key Program of Application Foundation and Advanced Technology (15JCZDJC31300)the Key Project in the Science & Technology Pillar Program of Jiangsu Province (BE2014147-3)the 111 Project (B16027)
文摘Suitable electron transport layers are essential for high performance planar perovskite heterojunction solar cells. Here, we use ZnO electron transport layer sputtered under oxygen-rich atmosphere at room temperature to decrease the hydroxide and then suppress decomposition of perovskite films. The perovskite films with improved crystallinity and morphology are achieved. Besides, on the ZnO substrate fabricated at oxygen-rich atmosphere, open-circuit voltage of the CH_3NH_3PbI_3-based perovskite solar cells increased by 0.13 V.A high open-circuit voltage of 1.16 V provides a good prospect for the perovskite-based tandem solar cells. The ZnO sputtered at room temperature can be easily fabricated industrially on a large scale, therefore, compatible to flexible and tandem devices. Those properties make the sputtered ZnO films promising as electron transport materials for perovskite solar cells.
基金financially supported by the Natural Science Foundation of Hebei(Nos.F2020202027 and F2020202067)the Major National Science and Technology Special Projects(No.2016ZX02301003-004-007)+1 种基金the National Natural Science Foundation of China(No.21271139)the Natural Science Foundation of Tianjin(No.17JCTPJC54500)。
文摘P-xylene(p-C_(8)H_(10))is extremely harmful and dangerous to human health due to high toxicity and strong carcinogenicity.Exploring sensitive material to effectively detect p-xylene is of importance.In this paper,perovskite single crystal(C_(4)H_(9)NH_(3))_(2)PbI_(4) has been successfully synthesized via solution method.The obtained product was analyzed by single crystal X-ray diffraction.With the space group Pbca,orthorhombic(C_(4)H_(9)NH_(3))_(2)PbI_(4) layered perovskite structure consists of an extended two-dimensional network of corner-sharing PbI_(6) octahedron.Single layer perovskite sheets of distorted PbI_(6) octahedron alternated with protonated n-butylammonium cation bilayers,which offers many advantages and provides the possibility of forming a gas sensor device based on the change of resistances.Density functional theory(DFT)simulations regarding the adsorption energy revealed that this organicinorganic hybrid perovskite compound has excellent selectivity toward p-xylene compared with other gases including C_(2)H_(5)OH,C_(6)H_(6),CH_(2)Cl_(2),HCHO,CH_(3)COCH_(3) and C_(7)H_(8).The calculation of electron density,density of states and electron density difference showed the sensing mechanism of p-C_(8)H_(10) is mainly derived from physical adsorption-desorption in view of electron transfer.
基金support by Natural Science Foundation of China(Nos.U0834004 and 20936001)the Science-Technology Plan of Guangzhou City(No.2009J1-C511-1)the Fundamental Research Funds for the Central Universities,SCUT(No.2009220038)
文摘Mixed conducting perovskite oxide SrCo_(0.9)Ta_(0.1)O_(3-δ)(SCT) is synthesized by solid-state reaction method.The activation in the initial stage of oxygen permeation through the SCT membrane is investigated.The results show that the activation in the initial stage of oxygen permeation has activate-memory,the first activation can only help to reduce active time of the next cycles,but it is helpless to increase the final oxygen permeation flux.XRD characterization shows that the imperfect perovskite phase structure is gradually improved and the crystal lattice has made some self-adjustment under the permeation conditions,therefore,the oxygen permeation flux of SCT disk membrane increases gradually and till it reaches a steady state.