期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Nanoparticle Exsolution on Perovskite Oxides:Insights into Mechanism,Characteristics and Novel Strategies
1
作者 Yo Han Kim Hyeongwon Jeong +6 位作者 Bo‑Ram Won Hyejin Jeon Chan‑ho Park Dayoung Park Yeeun Kim Somi Lee Jae‑ha Myung 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期312-346,共35页
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demon... Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications. 展开更多
关键词 Supported nanoparticle EXSOLUTION In situ growth MECHANISM perovskite oxide CATALYST
下载PDF
Tuning exsolution of nanoparticles in defect engineered layered perovskite oxides for efficient CO_(2) electrolysis 被引量:1
2
作者 Zhengrong Liu Jun Zhou +7 位作者 Yueyue Sun Xiangling Yue Jiaming Yang Lei Fu Qinyuan Deng Hongfei Zhao Chaofan Yin Kai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期219-227,共9页
Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite ox... Solid oxide electrolysis cell(SOEC) could be a potential technology to afford chemical storage of renewable electricity by converting water and carbon dioxide.In this work,we present the Ni-doped layered perovskite oxides,(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2) with n=5,8,and 12(LSTNn) for application as catalysts of CO_(2) electrolysis with the exsolution of Ni nanoparticles through a simple in-situ growth method.It is found that the density,size,and distribution of exsolved Ni nanoparticles are determined by the number of n in LSTNn due to the different stack structures of TiO_6 octahedra along the c axis.The Ni doping in LSTNn significantly improved the electrochemical activity by increasing oxygen vacancies,and the Ni metallic nanoparticles afford much more active sites.The results show that LSTNn cathodes can successfully be manipulated the activity by controlling both the n number and Ni exsolution.Among these LSTNn(n=5,8,and 12),LSTN8 renders a higher activity for electrolysis of CO_(2) with a current density of 1.50A cm^(-2)@2.0 V at 800℃ It is clear from these results that the number of n in(La_(4)Sr_(n-4))_(0.9)Ti_(0.9n)Ni_(0.1n)O_(3n+2)with Ni-doping is a key factor in controlling the electrochemical performance and catalytic activity in SOEC. 展开更多
关键词 Layered perovskite oxides In-situ growth SOEC TITANATE
下载PDF
Rapid and durable oxygen reduction reaction enabled by a perovskite oxide with self-cleaning surface
3
作者 Shengli Pang Yifan Song +7 位作者 Meng Cui Xin Tang Chao Long Lingfeng Ke Gongmei Yang Ting Fang Yong Guan Chonglin Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期333-340,I0010,共9页
The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we... The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we report a new discovery in which enriched Ba and Fe ions on the near-surface of Nd_(1/2)Ba_(1/2)Co_(1/3)Fe_(1/3)Mn_(1/3)O_(3-δ)spontaneously agglomerate into dispersed Ba_(5)Fe_(2)O_(8) nanoparticles and maintain a highly active and durable perovskite structure on the surface.This unique surface selfcleaning phenomenon is related to the low average potential energy of Ba_(5)Fe_(2)O_(8),which is grown on the near-surface layer.The electrochemically inert Ba_(5)Fe_(2)O_(8) segregation layer on the near-surface of the perovskite catalyst achieves self-cleaning by regulating the formation energy of enriched metal oxides.This self-cleaned perovskite surface exhibits an ultrafast oxygen exchange rate,high catalytic activity for the oxygen reduction reaction,and good adaptability to the actual working conditions of solid oxide fuel cell stacks.This study paves a new way for overcoming the stubborn problem of perovskite catalyst surface deactivation and enriches the scientific knowledge of surface catalysis. 展开更多
关键词 Surface chemistry Energy materials ELECTROCATALYSIS perovskite oxide Oxygen reduction reaction Solid oxide fuel cells
下载PDF
In operando-formed interface between silver and perovskite oxide for efficient electroreduction of carbon dioxide to carbon monoxide
4
作者 Xinhao Wu Yanan Guo +11 位作者 Yuxing Gu Fenghua Xie Mengran Li Zhiwei Hu Hong-Ji Lin Chih-Wen Pao Yu-Cheng Huang Chung-Li Dong Vanessa KPeterson Ran Ran Wei Zhou Zongping Shao 《Carbon Energy》 SCIE CSCD 2023年第4期81-93,共13页
Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic perf... Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic performance and electrochemical behavior of complex metal oxides,especially perovskite oxides,is rarely reported.Here,the inorganic perovskite oxide Ag-doped(La_(0.8)Sr_(0.2))_(0.95)Ag_(0.05)MnO_(3-δ)(LSA0.05M)is reported as an efficient electrocatalyst for ECR to CO for the first time,which exhibits a Faradaic efficiency(FE)of 84.3%,a remarkable mass activity of 75Ag^(-1)(normalized to the mass of Ag),and stability of 130 h at a moderate overpotential of 0.79 V.The LSA0.05M catalyst experiences structure reconstruction during ECR,creating the in operando-formed interface between the perovskite and the evolved Ag phase.The evolved Ag is uniformly distributed with a small particle size on the perovskite surface.Theoretical calculations indicate the reconstruction of LSA0.05M during ECR and reveal that the perovskite-Ag interface provides adsorption sites for CO_(2) and accelerates the desorption of the*CO intermediate to enhance ECR.This study presents a novel high-performance perovskite catalyst for ECR andmay inspire the future design of electrocatalysts via the in operando formation of metal-metal oxide interfaces. 展开更多
关键词 electrochemical CO_(2)reduction faradaic efficiencies interfaces perovskite oxides
下载PDF
Methane Oxidation to Synthesis Gas Using Lattice Oxygen of La_(1-x)Sr_xMO_(3-λ)(M =Fe,Mn) Perovskite Oxides Instead of Molecular Oxygen 被引量:10
5
作者 LiRanjia YuChangchun ZhuGuangrong ShenShikong 《Petroleum Science》 SCIE CAS CSCD 2005年第1期19-23,共5页
In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x ... In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1- SrxMO3-λ (M=Fe, x Mn) perovskite oxides instead of molecular oxygen was investigated. The redox circulation between 11% O2/Ar flow and 11% CH4/He flow at 900℃ shows that methane can be oxidized to CO and H2 with a selectivity of over 90.7% using the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite oxides in an appropriate reaction condition, while the lost lattice x oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of La1- SrxFeO3-λ (x≤0.2) perovskite x oxides instead of molecular oxygen to react with methane to synthesis gas in the redox mode. 展开更多
关键词 Partial oxidation METHANE synthesis gas lattice oxygen La1- xSrxFeO3-λperovskite oxides
下载PDF
Comparison of LaFeO_3,La_(0.8)Sr_(0.2)FeO_3,and La_(0.8)Sr_(0.2)Fe_(0.9)CO_(0.1)O_3 perovskite oxides as oxygen carrier for partial oxidation of methane 被引量:4
6
作者 Xiaoping Dai Changchun Yu Qiong Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期415-418,共4页
Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and s... Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction, Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox reaction decreased over La0.8Sr0.2Fe0.9Co0. 1O3 oxide, while LaFeO3 and La0.8Sr0.2FeO3 exhibited excellent structural stability and continuous oxygen supply. 展开更多
关键词 perovskite oxides oxygen carrier METHANE synthesis gas continuous flow reaction sequential redox reaction
下载PDF
A bifunctional perovskite oxide catalyst:The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping 被引量:1
7
作者 Jia Sun Lei Du +7 位作者 Baoyu Sun Guokang Han Yulin Ma Jiajun Wang Hua Huo Pengjian Zuo Chunyu Du Geping Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期217-224,共8页
ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen... ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMn_(x)Co_(1-x)O_(3))can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMn_(x)Ni_(y)Co_(z)O_(3)(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm^(-2) is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm^(-2) and EDER@10 mA cm^(-2) is achieved as only 0.76 V by using the optimal LaMn_(x)Ni_(y)Co_(z)O_(3)(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO_(3)(1:2:3)catalyst,which not only decreases the e_(g) orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity. 展开更多
关键词 perovskite oxide Bifunctional catalyst Mn-Ni dopant Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Boosting the oxygen evolution reaction through migrating active sites from the bulk to surface of perovskite oxides 被引量:1
8
作者 Zhengsen Wang Ziyi Hao +3 位作者 Fang Shi Kaiyue Zhu Xuefeng Zhu Weishen Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期434-441,I0012,共9页
The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER pr... The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts. 展开更多
关键词 Oxygen evolution reaction(OER) perovskite oxides Oxygen vacancy Fe nanoparticles Migration of active site
下载PDF
Magnetic Behavior of Some Rare-Earth Transition-Metal Perovskite Oxide Systems 被引量:1
9
作者 Kenji Yoshii Akio Nakamura +2 位作者 Masaichiro Mizumaki Naoshi Ikeda Jun'ichiro Mizuki 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第6期733-738,共6页
Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanat... Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanates, magnetization reversal in the chromites and metallic ferromagnetism in the cobaltites. The results suggest an important role of the rare-earth ions for the magnetic properties of such complex oxides. 展开更多
关键词 perovskite oxide magnetic properties rare earth transition metal
下载PDF
Thin Film of Perovskite Oxide with Atomic Scale p-n Junctions 被引量:1
10
作者 HU Bin HUANG Ke-ke +3 位作者 HOU Chang-min YUAN Hong-ming PANG Guang-sheng FENG Shou-hua 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第3期379-381,共3页
Thin films of perovskite manganese oxide Lao.66Ca0.29K0.05MnO3(LCKMO) on Au/ITO(ITO=indium tin oxide) substrates were prepared by off-axis radio frequency magnetron sputtering and characterized by X-ray diffrac- t... Thin films of perovskite manganese oxide Lao.66Ca0.29K0.05MnO3(LCKMO) on Au/ITO(ITO=indium tin oxide) substrates were prepared by off-axis radio frequency magnetron sputtering and characterized by X-ray diffrac- tion(XRD), high-resolution transmission electron microscopy(HRTEM), and conductive atomic force microscopy (C-AFM) at room temperature. The thin films with thickness ranged from 100 nm to 300 nm basically show cubic structures with a=0.3886 nm, the same as that of the raw material used, but the structures are highly modulated. C-AFM results revealed that the atomic scale p-n junction feature of the thin films was the same as that of the single crystals. The preparation of the thin films thus further confirms the possibility of their application extending from micrometer-sized single crystals to macroscopic thin film. 展开更多
关键词 perovskite oxide Thin film Atomic scale p-n junction
下载PDF
Mechanisms for Polarization Fatigue Behaviors of Perovskite Oxide Ferroelectric Thin Films 被引量:1
11
作者 LIU J M (Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China) 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期36-,共1页
关键词 THIN Mechanisms for Polarization Fatigue Behaviors of perovskite oxide Ferroelectric Thin Films
下载PDF
Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds:Recent Advances and Future Prospects
12
作者 Li Yang Yanzhi Li +2 位作者 Yundong Sun Wei Wang Zongping Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期751-776,共26页
Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential ... Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges. 展开更多
关键词 catalytic combustion catalytic performance material design perovskite oxides volatile organic compounds
下载PDF
Preparation and Electrical Transport Properties of Perovskite Oxide Ln0.5Sr0.5CoO3
13
作者 Zhu Zhiqiang Ding Tiezhu Zhao Qian Zhang Liwen Wang Qiang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第4期465-465,共1页
The superfine powders of Ln0.5 Sr0.5 CoO3 (Ln = La, Pr, Nd, Sm, Eu) were obtained by solid state reactions. The crystal structure and electrical transport properties of samples doped with different rare earth elemen... The superfine powders of Ln0.5 Sr0.5 CoO3 (Ln = La, Pr, Nd, Sm, Eu) were obtained by solid state reactions. The crystal structure and electrical transport properties of samples doped with different rare earth elements as well as the forming process of the Perovskite structure were studied. The result shows that when the temperature reaches 1200 ℃, the samples will become a steady and unitary Perovskite phase by solid state reactions. The conductive behavor at low temperature is consistent with small polaron mechanism (i. e., localized electronic carriers having a thermally activated mobility). However, the maximum of conductivity appears at about 700 ℃, and the conductivity of La0.5Sr0.5CoO3 is the biggest in the intermediate-temperature (600 - 850 ℃ ), so it is fit for cathode material of intermediate-temperature solid oxide fuel cells. 展开更多
关键词 Ln0.5Sr0.5CoO3 oxide of perovskite electrical transport properties average crystal size rare earths
下载PDF
2D Ca/Nb-based perovskite oxide with Ta doping as highly efficient H_(2)O_(2)synthesis catalyst
14
作者 Xingchen Yang Yang Gao +6 位作者 Xiaohui Xu Wenqiang Xu Denghui Wang Bin Luo Dong Liu Tao Liang Bin Wang 《Nano Research》 SCIE EI CSCD 2024年第6期4934-4942,共9页
Perovskite oxides(POs)are emerging as a class of highly efficient catalysts for reducing oxygen to H_(2)O.Although a rich variety of POs-based catalysts have been developed by tuning the complex composition,a highly e... Perovskite oxides(POs)are emerging as a class of highly efficient catalysts for reducing oxygen to H_(2)O.Although a rich variety of POs-based catalysts have been developed by tuning the complex composition,a highly efficient PO catalyst that is able to alter the reaction pathway from a 4e−process to a 2e−process for H_(2)O_(2)production has rarely been achieved.We modified the structure and composition of a Ca-and Nb-based PO material by realizing a uniform two-dimensional(2D)morphology and varied Ta doping,resulting in the 2D Ca_(2)Nb_(3−x)Ta_(x)O_(10)−(x=0,0.5,1,and 1.5)monolayer catalysts.The obtained catalysts exhibit a dominant 2e−pathway and show exceptional H_(2)O_(2)production efficiency.The typical Ca_(2)Nb_(2.5)Ta_(0.5)O_(10)−nanoflakes showed an onset potential of 0.735 V vs.reversible hydrogen electrode(RHE),a remarkably high selectivity over 95%across a wide range of 0.3-0.7 V,an impressively high Faradaic efficiency of 94%,and a notable H_(2)O_(2)productivity of 1571 mmol·gcat^(−1)·h^(−1).These findings highlight the great potential of 2D perovskite oxide nanoflakes as advanced electrocatalysts for 2e−oxygen reduction reaction. 展开更多
关键词 perovskite oxide H_(2)O_(2) two-electron oxygen reduction reaction catalyst Ca_(2)Nb_(3-x)Ta_(x)O_(10)-nanoflakes
原文传递
Review on field-induced phase transitions in lead-free NaNbO_(3)-based antiferroelectric perovskite oxides for energy storage 被引量:2
15
作者 Mao-Hua Zhang Lovro Fulanovi +1 位作者 Changhao Zhao Jurij Koruza 《Journal of Materiomics》 SCIE CSCD 2023年第1期1-18,共18页
Emerging new applications of antiferroelectric perovskite oxides based on their fascinating phase transformation between polar and nonpolar states have provided considerable attention to this class of materials even d... Emerging new applications of antiferroelectric perovskite oxides based on their fascinating phase transformation between polar and nonpolar states have provided considerable attention to this class of materials even decades after the discovery of antiferroelectricity.After presenting the challenge of formulating a precise definition of antiferroelectric materials,we briefly summarize proposed applications.In the following,we focus on the crystallographic structures of the antiferroelectric and ferroelectric phases of NaNbO_(3),which is emerging as a promising alternative to PbZrO_(3)-based systems.The field-induced phase transition behavior of NaNbO_(3)-based AFE materials in the form of single crystals,bulk ceramics,and multilayer ceramic capacitors is reviewed.Recent advances in a group of materials exhibiting high energy storage performance and relaxor-like behavior are also covered.The influence of electrode geometry on phase transition behavior and thus on the energy storage property is briefly addressed.The review concludes with an overview of the remaining challenges related to the fundamental understanding of the scientific richness of AFE materials in terms of structure,microstructure,defect transport under high fields,and phase transition dynamics required for their future development and applications. 展开更多
关键词 ANTIFERROELECTRIC perovskite oxides Energy storage NaNbO_(3) Phase transition Lead free
原文传递
Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxides
16
作者 Yanggang Jia Shijie Chen +5 位作者 Xia Shao Jie Chen Dao-Lai Fang Saisai Li Aiqin Mao Canhua Li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第6期1214-1227,共14页
High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein... High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein,the porous perovskite-type RE(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3)(RE(=La,Sm,and Gd)is the abbreviation of rare earth)HEOs were successfully synthesized by a solution combustion synthesis(SCS)method.Owing to the synergistic effect of lattice distortion and oxygen vacancies(Ov),the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode exhibits superior high-rate lithium-ion storage performance and excellent cycling stability.A reversible capacity of 403 mAh·g^(-1) at a current rate of 0.2 A·g^(-1) after 500 cycles and a superior high-rate capacity of 394 mAh·g^(-1)even at 1.0 A·g^(-1)after 500 cycles are achieved.Meanwhile,the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode also exhibits a pronounced pseudo-capacitive behavior,contributing to an additional capacity.By adjusting and balancing the lattice distortion and oxygen vacancies of the electrode materials,the lithium-ion storage performance can be further regulated. 展开更多
关键词 high-entropy anode perovskite oxides lattice distortion oxygen vacancies(Ov) PSEUDOCAPACITANCE high-rate performance
原文传递
High-entropy perovskite oxide BaCo_(0.2)Fe_(0.2)Zr_(0.2)Sn_(0.2)Pr_(0.2)O_(3-δ) with triple conduction for the air electrode of reversible protonic ceramic cells
17
作者 Jiaxiang Sun Rongzheng Ren +7 位作者 Hualiang Yue Wencan Cui Gaige Wang Chunming Xu Jinshuo Qiao Wang Sun Kening Sun Zhenhua Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期298-302,共5页
Reversible protonic ceramic cells(RPCCs) show great potential as new-generation energy conversion and storage devices. However, the mature development of RPCCs is seriously hindered by the inactivity and poor stabilit... Reversible protonic ceramic cells(RPCCs) show great potential as new-generation energy conversion and storage devices. However, the mature development of RPCCs is seriously hindered by the inactivity and poor stability of air electrodes exposed to concentrated vapor under operating conditions. Herein, we report a high-entropy air electrode with the composition BaCo_(0.2)Fe_(0.2)Zr_(0.2)Sn_(0.2)Pr_(0.2)O_(3-δ)(BCFZSP), which shows integrated electronic, protonic and oxygenic conduction in a single perovskite phase and excellent structural stability in concentrated steam. Such triple conduction can spread the electrochemically active sites of the air electrode to the overall electrode surface, thus optimizing the kinetics of the oxygen reduction and evolution reactions(0.448 Ω cm^(2) of polarization resistance at 550℃). As-prepared RPCCs with a BCFZSP air electrode at 600℃ achieved a peak power density of 0.68 W/cm^(2) in fuel-cell mode and a current density of 0.92 A/cm^(2) under a 1.3 V applied voltage in electrolysis mode. More importantly, the RPCCs demonstrate an encouragingly high stability during 120 h of reversible switching between the fuelcell and electrolysis modes. Given their excellent performance, high-entropy perovskites can be promising electrode materials for RPCCs. 展开更多
关键词 High-entropy perovskite oxide Triple-conducting oxide Air electrode Reversible protonic ceramic cells Hydrogen production
原文传递
Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review
18
作者 Shan Wang Ping Xiao +4 位作者 Jie Yang Sónia ACCarabineiro Marek Wiśniewski Junjiang Zhu Xinying Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第11期1649-1676,共28页
With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalyt... With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions.This review first introduces the hazards of VOCs,their treatment technologies,and summarizes the treatment mechanism issues.Next,the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded,with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications,and on the treatment of different VOCs.The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed.This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs. 展开更多
关键词 perovskite oxides volatile organic compounds catalytic combustion reaction mechanism
原文传递
High-entropy perovskite oxides:An emergent type of photochromic oxides with fast response for handwriting display
19
作者 Xiangyu Wang Tong Wei +3 位作者 Yingqiu Xu Liwei Wu Yingdong Han Jiao Cui 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第7期1371-1388,共18页
Stimulus-responsive materials are fundamental to the broad and ever-growing field of intelligence research,which bridge intelligent systems with the Internet of Things(loT)in future lifestyles.Among these materials,wr... Stimulus-responsive materials are fundamental to the broad and ever-growing field of intelligence research,which bridge intelligent systems with the Internet of Things(loT)in future lifestyles.Among these materials,writable materials have received great interest;however,carbonization and irreversible writing processes are generally inevitable for extensively investigated organic compounds.Photochromism is a potential mode of composing information.Nevertheless,inorganic materials usually exhibit weak photochromic effects.Here,a novel strategy of designing high-entropy perovskite(HEP)oxides is put forward to develop a new inorganic photochromic system with satisfying performance.A series of HEP oxides are synthesized for the first time.Benefiting from excellent photochromic features,real-time information encoding was achieved.The mechanism-related photochromism is also discussed.Distinct from the previous works,it is believed that the present photochromic-based HEP oxides provide a new and manyfold research space for the future development of conventional writable materials and the disclosing of unprecedented properties and phenomena. 展开更多
关键词 stimulus-responsive materials inorganic materials high-entropy perovskite(HEP)oxides PHOTOCHROMISM
原文传递
Recent progress in the development of RE_(2)TMTM’O_(6)double perovskite oxides for cryogenic magnetic refrigeration
20
作者 Lingwei Li Mi Yan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期1-12,共12页
The magnetic functional materials play a particularly important role in our modern society and daily life.The magnetocaloric effect(MCE)is at the basis of a solid state magnetic refrigeration(MR)technology which may e... The magnetic functional materials play a particularly important role in our modern society and daily life.The magnetocaloric effect(MCE)is at the basis of a solid state magnetic refrigeration(MR)technology which may enhance the efficiency of cooling systems,both for room temperature and cryogenic appli-cations.Despite numerous experimental and theoretical MCE studies,commercial MR systems are still at developing stage.Designing magnetic solids with outstanding magnetocaloric performances remains therefore a most urgent task.Herein,recent progresses on characterizing the crystal structure,magnetic properties and cryogenic MCE of rare earths(RE)-based RE_(2)TMTM’O_(6)double perovskite(DP)oxides,where TM and TM’are different 3d transition metals,are summarized.Some Gd-based DP oxides are found to exhibit promising cryogenic magnetocaloric performances which make them attractive for active MR ap-plications. 展开更多
关键词 Magnetocaloric effect(MCE) Rare earths Double perovskite(DP)oxides Magnetic functional materials Cryogenic magnetic refrigeration Magnetocaloric performances
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部