期刊文献+
共找到351篇文章
< 1 2 18 >
每页显示 20 50 100
Review of all-inorganic perovskites and their tandem solar cells with crystalline silicon
1
作者 Hongjun Wu Zhaorui Sun +5 位作者 Haonan Li Xiuhua Chen Wenhui Ma Shaoyuan Li Zhengjie Chen Fengshuo Xi 《Energy Materials and Devices》 2024年第3期51-80,共30页
In widely studied organic-inorganic hybrid perovskites,the organic component tends to volatilize and decompose under high temperatures,oxygen,and humidity,which adversely affects the performance and longevity of the a... In widely studied organic-inorganic hybrid perovskites,the organic component tends to volatilize and decompose under high temperatures,oxygen,and humidity,which adversely affects the performance and longevity of the associated solar cells.In contrast,all-inorganic perovskites demonstrate superior stability under these conditions and offer photoelectric properties comparable to those of their hybrid counterparts.The potential of tandem solar cells(TSCs)made from all-inorganic perovskites is especially promising.This review is the first to address recent advancements in TSCs that use all-inorganic perovskites and crystalline silicon(c-Si),both domestically and internationally.This work provides a systematic and thorough analysis of the current challenges faced by these systems and proposes rational solutions.Additionally,we elucidate the regulatory mechanisms of all-inorganic perovskites and their TSCs when combined with c-Si,summarizing the corresponding patterns.Finally,we outline future research directions for all-inorganic perovskites and their TSCs with c-Si.This work offers valuable insights and references for the continued advancement of perovskitebased TSCs. 展开更多
关键词 all-inorganic perovskites single-junction solar cells perovskite/crystalline silicon tandem solar cells
下载PDF
Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide
2
作者 Jingjing Liu Biao Shi +14 位作者 Qiaojing Xu Yucheng Li Yuxiang Li Pengfei Liu Zetong SunLi Xuejiao Wang Cong Sun Wei Han Diannan Li Sanlong Wang Dekun Zhang Guangwu Li Xiaona Du Ying Zhao Xiaodan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期557-570,共14页
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ... Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs. 展开更多
关键词 perovskite crystallization (111)preferred orientation Defect passivation perovskite/silicon tandem solar cells
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
3
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells tandem solar cells Buffer layer Stability
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
4
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
5
作者 Xiaojing Lv Weisheng Li +11 位作者 Jin Zhang Yujie Yang Xuefei Jia Yitong Ji Qianqian Lin Wenchao Huang Tongle Bu Zhiwei Ren Canglang Yao Fuzhi Huang Yi-Bing Cheng Jinhui Tong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期64-70,I0003,共8页
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ... Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering. 展开更多
关键词 Wide-bandgap perovskite Surface defect Multifunctional molecule All-perovskite tandem solar cells
下载PDF
Electrochemically Deposited CZTSSe Thin Films for Monolithic Perovskite Tandem Solar Cells with Efficiencies Over 17%
6
作者 Sun Kyung Hwang Ik Jae Park +3 位作者 Se Won Seo Jae Hyun Park So Jeong Park Jin Young Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期147-152,共6页
In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in im... In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect. 展开更多
关键词 CZTSSe monolithic tandem solar cells perovskite solution process surface roughness control
下载PDF
Sb_(2)Se_(3)as a bottom cell material for efficient perovskite/Sb_(2)Se_(3)tandem solar cells
7
作者 Zhiyuan Cai Jia Sun +5 位作者 Huiling Cai Yuehao Gu Rongfeng Tang Changfei Zhu Paifeng Luo Tao Chen 《Energy Materials and Devices》 2024年第1期54-63,共10页
Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom ce... Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom cell absorber material in tandem solar cells.More importantly,Sb_(2)Se_(3)solar cells exhibit excellent stability with nontoxic compositional elements.The band gap of organic-inorganic hybrid perovskite is tunable over a wide range.In this work,we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.By adjusting the thickness of the transparent electrode layer of the top cell,the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%,while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85%by introducing a double electron transport layer.Finally,the four-termi-nal tandem solar cell achieves an impressive efficiency exceeding 20%.This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells. 展开更多
关键词 tandem solar cells four-terminal antimony selenide perovskite transparent conducting electrode
下载PDF
Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management 被引量:2
8
作者 Mohammad I.Hossain Wayesh Qarony +3 位作者 Sainan Ma Longhui Zeng Dietmar Knipp Yuen Hong Tsang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期49-72,共24页
Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management.An extended Shockley-Queisser model is used to identify f... Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management.An extended Shockley-Queisser model is used to identify fundamental loss mechanisms and link the losses to the optics of solar cells.Photon management is used to minimize losses and maximize the energy conversion efficiency.The influence of photon management on the solar cell parameters of a perovskite single-junction solar cell and a perovskite/silicon solar cell is discussed in greater details.An optimized solar cell design of a perovskite/silicon tandem solar cell is presented,which allows for the realization of solar cells with energy conversion efficiencies exceeding 32%. 展开更多
关键词 perovskite solar cell tandem solar cell Thermodynamic PHOTON MANAGEMENT Detailed balance LIMIT
下载PDF
Composite electron transport layer for efficient N-I-P type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage 被引量:2
9
作者 Bingbing Chen Pengyang Wang +8 位作者 Renjie Li Ningyu Ren Yongliang Chen Wei Han Lingling Yan Qian Huang Dekun Zhang Ying Zhao Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期461-467,I0011,共8页
Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the ... Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the single-junction limit, while the performance of N-I-P type PSTSCs is far below the theoretical value. Here, we developed a composite electron transport layer for N-I-P type monolithic PSTSCs with enhanced open-circuit voltage(VOC) and power conversion efficiency(PCE). Lithium chloride(Li Cl) was added into the tin oxide(SnO_(2)) precursor solution, which simultaneously passivated the defects and increased the electron injection driving force at the electron transfer layer(ETL)/perovskite interface.Eventually, we achieved monolithic PSTSCs with an efficiency of 25.42% and V_(OC) of 1.92 V, which is the highest PCE and VOCin N-I-P type perovskite/Si tandem devices. This work on interface engineering for improving the PCE of monolithic PSTSCs may bring a new hot point about perovskite-based tandem devices. 展开更多
关键词 Lithium chloride additive Electron transport layer High efficiency perovskite/Si tandem solar cells
下载PDF
Efficiency-loss analysis of monolithic perovskite/silicon tandem solar cells by identifying the patterns of a dual two-diode model’s current-voltage curves 被引量:1
10
作者 Yuheng Zeng Zetao Ding +11 位作者 Zunke Liu Wei Liu Mingdun Liao Xi Yang Zhiqin Ying Jingsong Sun Jiang Sheng Baojie Yan Haiyan He Chunhui Shou Zhenhai Yang Jichun Ye 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期68-77,共10页
In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/... In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells. 展开更多
关键词 monolithic perovskite/silicon tandem solar cell efficiency-loss analysis dual two-diode model SPICE numerical simula-tion
下载PDF
Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates
11
作者 潘赵耀 杨金彭 沈小双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期668-671,共4页
Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off ... Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off between the open-circuit voltage and the fill factor through two mechanisms:reduced surface recombination velocity and increased bulk recombination lifetime due to better perovskite crystallinity.From arguments of drift-diffusion simulations,we find that an increase in mobility and carrier recombination lifetime in bulk are the key factors for minimizing the resistance-effect from thicker PICs and achieving a maximum power conversion efficiency(PCE)at approximately 25%reduced contact area.Furthermore,the partially replacement of perovskite films with thicker PICs would result in a reduction in short-current density,but the relative low refractive index of the PICs imbedded into the high refractive index perovskite creates light trapping structures that compensate for this loss. 展开更多
关键词 perovskite solar cells NANOSTRUCTURE crystalline mobility
下载PDF
Recent progress in developing efficient monolithic all-perovskite tandem solar cells 被引量:4
12
作者 Yurui Wang Mei Zhang +4 位作者 Ke Xiao Renxing Lin Xin Luo Qiaolei Han Hairen Tan 《Journal of Semiconductors》 EI CAS CSCD 2020年第5期4-14,共11页
Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskit... Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskite solar cells(PSCs)have achieved a boost of the power conversion efficiency(PCE)from 3.8%to 25.2%in just a decade.With the continuous growth of PCE in single-junction PSCs,exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs.In this review,we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell.We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device:tunnel recombination junction,wide-bandgap top subcell,and narrow-bandgap bottom subcell.Finally,we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field. 展开更多
关键词 perovskite solar cells MONOLITHIC tandem MONOLITHIC all-perovskite tandem solar cell stability
下载PDF
4‑Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22%Efficiency 被引量:2
13
作者 Ling Liu Hanrui Xiao +10 位作者 Ke Jin Zuo Xiao Xiaoyan Du Keyou Yan Feng Hao Qinye Bao Chenyi Yi Fangyang Liu Wentao Wang Chuantian Zuo Liming Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期172-181,共10页
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei... After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter. 展开更多
关键词 4-Terminal tandem solar cells Inorganic perovskite solar cells Organic solar cells SEMITRANSPARENT Drop-coating
下载PDF
Enhanced Photovoltaic Properties for Rear Passivated Crystalline Silicon Solar Cells by Fabricating Boron Doped Local Back Surface Field 被引量:1
14
作者 陈楠 SHEN Shuiliang 杜国平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1323-1328,共6页
In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron dopin... In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF. 展开更多
关键词 crystalline silicon solar cells rear passivation local back surface field dopingconcentration
下载PDF
Perovskite tandem solar cells with improved efficiency and stability 被引量:1
15
作者 Zhengjie Zhu Kaitian Mao Jixian Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期219-232,共14页
Tandem solar cells represent an attractive technology to overcome the Shockley-Queisser limit of single-junction cells.Recently,wide-bandgap metal halide perovskites are paired with complementary bandgap photovoltaic ... Tandem solar cells represent an attractive technology to overcome the Shockley-Queisser limit of single-junction cells.Recently,wide-bandgap metal halide perovskites are paired with complementary bandgap photovoltaic technologies(such as silicon,CIGS,and low-bandgap perovskites) in tandem architectures,enabling a pathway to achieve industry goals of pushing power-conversion-efficiency(PCE) over 30% at low cost.In this review of perovskite tandems,we aim to present an overview of their recent progress on efficiency and stability enhancement.We start by comparing 2-terminal and 4-terminal tandems,from the perspective of technical and cost barriers.We then focus on 2-terminal tandems and summarize the collective efforts on improving their performance,fabrication processing,and operational stability.We also present the comprehensive progress in perovskite/Si, perovskite/CIGS,and perovskite/perovskite monolithic tandems,alo ng with advanced technology for subcell diagnosis.We highlight that an in-depth understanding of the mobile ion character of perovskites and applying consensus stability tests(such as the extended ISOS protocol for perovskite) under light,heating,and voltage bias are critically important for improving perovskite tandems toward 25-year outdoor operation lifetime. 展开更多
关键词 tandem solar cells perovskite/Si perovskite/CIGS perovskite/perovskite perovskite solar cells
下载PDF
Recent progress on efficient perovskite/organic tandem solar cells 被引量:1
16
作者 Rongbo Wang Meidouxue Han +6 位作者 Ya Wang Juntao Zhao Jiawei Zhang Yi Ding Ying Zhao Xiaodan Zhang Guofu Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期158-172,I0006,共16页
The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promi... The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering. 展开更多
关键词 tandem solar cells perovskite Organic solarcells Interconnecting layer
下载PDF
Loss Analysis of High-Efficiency Perovskite/Si Tandem Solar Cells for Large Market Applications 被引量:1
17
作者 Masafumi Yamaguchi Kyotaro Nakamura +2 位作者 Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2022年第4期167-180,共14页
The Si tandem solar cells composes of III-V, II-VI, chalcogenide and perovskite top cells and Si bottom cells are very attractive for creation of new markets. The perovskite/Si tandem solar cells are thought to be one... The Si tandem solar cells composes of III-V, II-VI, chalcogenide and perovskite top cells and Si bottom cells are very attractive for creation of new markets. The perovskite/Si tandem solar cells are thought to be one of the most promising PV devices because of high-efficiency and low-cost potential. However, efficiencies of perovskite/Si tandem solar cells with an efficiency of 29.8% are lower compared to 39.5% with III-V 3-junction tandem solar cells and 35.9% with III-V/Si 3-junction tandem solar cells. Therefore, it is necessary to clarify and reduce several losses of perovskite/Si tandem solar cells. This paper presents high efficiency potential of perovskite/Si tandem solar cells analyzed by using our analytical procedure and discusses about non-radiative recombination, optical and resistance losses in those tandem solar cells. The perovskite/Si 2-junction tandem solar cells is shown to have efficiency potential of 37.4% as a result of non-radiative recombination loss of 2.3%, optical loss of 2.7% and resistance loss of 3.1%. Although the perovskite/Si 3-junction tandem solar cells are thought to be very attractive because of higher efficiency with an efficiency of more than 42%, decreasing non-radiative recombination loss in wide bandgap perovskite solar cell materials is pointed out to be necessary. 展开更多
关键词 perovskite Si tandem solar cells High-Efficiency Loss Analysis
下载PDF
History of the Amorphous Silicon on Crystalline Silicon Heterojunction Solar Cell 被引量:1
18
作者 H.C. Neitzert W.R. Fahrner 《Journal of Energy and Power Engineering》 2011年第3期222-226,共5页
Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has... Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has more than 40 years' old history. The early development of the technology and the results, obtained in the last years with this type of solar cell are reviewed. In particular it is demonstrated why the physical understanding of the interface properties and band-structure was important for the development of high efficiency solar cells. 展开更多
关键词 HISTORY solar cell amorphous silicon crystalline silicon heterojunction.
下载PDF
Antimony Potassium Tartrate Stabilizes Wide-Bandgap Perovskites for Inverted 4-T All-Perovskite Tandem Solar Cells with Efficiencies over 26%
19
作者 Xuzhi Hu Jiashuai Li +7 位作者 Chen Wang Hongsen Cui Yongjie Liu Shun Zhou Hongling Guan Weijun Ke Chen Tao Guojia Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期204-217,共14页
Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired ... Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired large open-circuit voltage(VOC)loss due to light-induced phase segregation and severe non-radiative recombination loss.Herein,antimony potassium tartrate(APTA)is added to perovskite precursor as a multifunctional additive that not only coordinates with unbonded lead but also inhibits the migration of halogen in perovskite,which results in suppressed non-radiative recombination,inhibited phase segregation and better band energy alignment.Therefore,a APTA auxiliary WBG PSC with a champion photoelectric conversion efficiency of 20.35%and less hysteresis is presented.They maintain 80%of their initial efficiencies under 100 mW cm^(-2)white light illumination in nitrogen after 1,000 h.Furthermore,by combining a semi-transparent WBG perovskite front cell with a narrow-bandgap tin–lead PSC,a perovskite/perovskite four-terminal tandem solar cell with an efficiency over 26%is achieved.Our work provides a feasible approach for the fabrication of efficient tandem solar cells. 展开更多
关键词 perovskite solar cell tandem Wide bandgap Multifunctional additive
下载PDF
A highly-efficient concentrated perovskite solar cell-thermoelectric generator tandem system
20
作者 Yangying Zhou Yanan Chen +4 位作者 Qi Zhang Yu Zhou Meiqian Tai Kunihito Koumoto Hong Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期730-735,I0015,共7页
Concentrated photovoltaic(CPV)has been identified as an effective method to further enhance the efficiency of photovoltaic cells.Previous studies on CPV mainly focused on III-V multi-junction cells.Nevertheless,Ⅲ-ⅤC... Concentrated photovoltaic(CPV)has been identified as an effective method to further enhance the efficiency of photovoltaic cells.Previous studies on CPV mainly focused on III-V multi-junction cells.Nevertheless,Ⅲ-ⅤCPV technology is mainly used in niche applications due to its high cost.Here,we use metal-halide perovskite solar cell(PSC)to demonstrate a concentrated photovoltaic-thermoelectric tandem device.The thermoelectric generator(TEG)is utilized to reduce the effect of heat generation under concentrated solar irradiance.Our tandem system achieved a peak power conversion efficiency(PCE)of 25.0%at a solar concentration of 3 suns.This efficiency exceeded that of the single PSC by~4.7%.Our work proves that by controlling the heat flow in concentrated PSC-TEG tandem system,the redundant heat produced by upper PSC can be effectively reused.This tandem structure provides a promising approach to improve the efficiency and stability of PSC under low-concentrated solar irradiation. 展开更多
关键词 Concentrated PV-TEG tandem system perovskite solar cell Thermal behavior Working stability
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部