期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide
1
作者 Jingjing Liu Biao Shi +14 位作者 Qiaojing Xu Yucheng Li Yuxiang Li Pengfei Liu Zetong SunLi Xuejiao Wang Cong Sun Wei Han Diannan Li Sanlong Wang Dekun Zhang Guangwu Li Xiaona Du Ying Zhao Xiaodan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期557-570,共14页
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ... Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs. 展开更多
关键词 perovskite crystallization (111)preferred orientation Defect passivation perovskite/silicon tandem solar cells
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
2
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells tandem solar cells Buffer layer Stability
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
3
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
4
作者 Xiaojing Lv Weisheng Li +11 位作者 Jin Zhang Yujie Yang Xuefei Jia Yitong Ji Qianqian Lin Wenchao Huang Tongle Bu Zhiwei Ren Canglang Yao Fuzhi Huang Yi-Bing Cheng Jinhui Tong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期64-70,I0003,共8页
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ... Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering. 展开更多
关键词 Wide-bandgap perovskite Surface defect Multifunctional molecule All-perovskite tandem solar cells
下载PDF
Electrochemically Deposited CZTSSe Thin Films for Monolithic Perovskite Tandem Solar Cells with Efficiencies Over 17%
5
作者 Sun Kyung Hwang Ik Jae Park +3 位作者 Se Won Seo Jae Hyun Park So Jeong Park Jin Young Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期147-152,共6页
In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in im... In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect. 展开更多
关键词 CZTSSe monolithic tandem solar cells perovskite solution process surface roughness control
下载PDF
Modeling and Simulation of Heterojunction Solar Cell with Mono Crystalline Silicon
6
作者 Sajid Ullah Ayesha Gulnaz Guangwei Wang 《Journal of Applied Mathematics and Physics》 2024年第3期997-1020,共24页
The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the pa... The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the past two decades, the conversion efficiency of these cells has remained relatively high. While solar cells have a great potential as a device of renewable energy, the high cost they incur per Watt continues to be a significant barrier to their widespread implementation. As a consequence, it is vital to conduct research into alternate materials that may be used in the construction of solar cells. The heterojunction solar cell (HJSC), which is based on n-type zinc oxide (n-ZnO) and p-type silicon (p-Si), is one of the numerous alternatives of the typical Si single homojunction solar cell. There are many deficiencies that can be found in the published research on n-ZnO/p-Si heterojunction solar cell. Inconsistencies in the stated value of open circuit voltage (V<sub>oc</sub>) of the solar cell are one example of deficiency. The absence of a full theoretical study to evaluate the potential of the solar cell structure is another deficiency that can be found in these researches. A lower value of experimentally obtained V<sub>OC</sub> in comparison to the theoretical prediction based on the band-gap between n-ZnO and p-Si. There needs to be more consensus among scientists regarding the optimal conditions for the growth of zinc oxide. Many software’s are available for simulating and optimizing the solar cells based on these parameters. For this purpose, in this dissertation, I provide computational results relevant to n-ZnO/p-Si HJSC to overcome deficiencies that have been identified. While modeling and simulating the potential of the solar cell structure with AFORS-HET, it is essential to consider the constraints that exist in the real world. AFORS-HET was explicitly designed to mimic the multilayer solar cell arrangement. In AFORS-HET, we can add up to seven layers for solar cell layout. By using this software, we can figure out the open circuit voltage (V<sub>OC</sub>), the short circuit current (J<sub>SC</sub>), the quantum efficiency (QE, %), the heterojunction energy band structure, and the power conversion efficiency (PCE). 展开更多
关键词 heterojunction solar cell silicon Monocrystalline DEFICIENCIES AFORS-HET OPTIMIZATION Open Circuit Voltage Quantum Efficiency
下载PDF
Efficiency-loss analysis of monolithic perovskite/silicon tandem solar cells by identifying the patterns of a dual two-diode model’s current-voltage curves 被引量:1
7
作者 Yuheng Zeng Zetao Ding +11 位作者 Zunke Liu Wei Liu Mingdun Liao Xi Yang Zhiqin Ying Jingsong Sun Jiang Sheng Baojie Yan Haiyan He Chunhui Shou Zhenhai Yang Jichun Ye 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期68-77,共10页
In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/... In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells. 展开更多
关键词 monolithic perovskite/silicon tandem solar cell efficiency-loss analysis dual two-diode model SPICE numerical simula-tion
下载PDF
Alleviating Interfacial Recombination of Heterojunction Electron Transport Layer via Oxygen Vacancy Engineering for Efficient Perovskite Solar Cells Over 23%
8
作者 Yohan Ko Taemin Kim +3 位作者 Chanyong Lee Changhyun Lee Yong Ju Yun Yongseok Jun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期311-322,共12页
Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the... Electron transport layer(ETL)is pivotal to charge carrier transport for PSCs to reach the Shockley-Queisser limit.This study provides a fundamental understanding of heterojunction electron transport layers(ETLs)at the atomic level for stable and efficient perovskite solar cells(PSCs).The bilayer structure of an ETL composed of SnO_(2) on TiO_(2) was examined,revealing a critical factor limiting its potential to obtain efficient performance.Alteration of oxygen vacancies in the TiO_(2) underlayer via an annealing process is found to induce manipulated band offsets at the interface between the TiO_(2) and SnO_(2) layers.In-depth electronic investigations of the bilayer structure elucidate the importance of the electronic properties at the interface between the TiO_(2) and SnO_(2) layers.The apparent correlation in hysteresis phenomena,including current density-voltage(J-V)curves,appears as a function of the type of band alignment.Density functional theory calculations reveal the intimate relationship between oxygen vacancies,deep trap states,and charge transport efficiency at the interface between the TiO_(2) and SnO_(2) layers.The formation of cascade band alignment via control over the TiO_(2) underlayer enhances device performance and suppresses hysteresis.Optimal performance exhibits a power conversion efficiency(PCE)of 23.45%with an open-circuit voltage(V_(oc))of 1.184 V,showing better device stability under maximum power point tracking compared with a staggered bilayer under one-sun continuous illumination. 展开更多
关键词 electron transport bilayer heterojunction bilayers interfacial defect oxygen vacancy engineering perovskite solar cells
下载PDF
Two-Dimensional Materials for Highly Efficient and Stable Perovskite Solar Cells
9
作者 Xiangqian Shen Xuesong Lin +5 位作者 Yong Peng Yiqiang Zhang Fei Long Qifeng Han Yanbo Wang Liyuan Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期176-212,共37页
Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders th... Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes. 展开更多
关键词 perovskite solar cells Two-dimensional materials Interface engineering Van der Waals heterojunction Electrodes
下载PDF
4‑Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22%Efficiency 被引量:2
10
作者 Ling Liu Hanrui Xiao +10 位作者 Ke Jin Zuo Xiao Xiaoyan Du Keyou Yan Feng Hao Qinye Bao Chenyi Yi Fangyang Liu Wentao Wang Chuantian Zuo Liming Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期172-181,共10页
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei... After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter. 展开更多
关键词 4-Terminal tandem solar cells Inorganic perovskite solar cells Organic solar cells SEMITRANSPARENT Drop-coating
下载PDF
Improving the UV-light stability of silicon heterojunction solar cells through plasmon-enhanced luminescence downshifting of YVO_(4):Eu^(3+),Bi^(3+)nanophosphors decorated with Ag nanoparticles 被引量:1
11
作者 Cheng-Kun Wu Shuai Zou +6 位作者 Chen-Wei Peng Si-Wei Gu Meng-Fei Ni Yu-Lian Zeng Hua Sun Xiao-Hong Zhang Xiao-Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期212-220,I0007,共10页
The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ... The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules. 展开更多
关键词 Downshifting Silver nanoparticles Localized surface plasmon resonance UV-light stability silicon heterojunction solar cells
下载PDF
Recent progress on efficient perovskite/organic tandem solar cells
12
作者 Rongbo Wang Meidouxue Han +6 位作者 Ya Wang Juntao Zhao Jiawei Zhang Yi Ding Ying Zhao Xiaodan Zhang Guofu Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期158-172,I0006,共16页
The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promi... The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering. 展开更多
关键词 tandem solar cells perovskite Organic solarcells Interconnecting layer
下载PDF
Antimony Potassium Tartrate Stabilizes Wide-Bandgap Perovskites for Inverted 4-T All-Perovskite Tandem Solar Cells with Efficiencies over 26%
13
作者 Xuzhi Hu Jiashuai Li +7 位作者 Chen Wang Hongsen Cui Yongjie Liu Shun Zhou Hongling Guan Weijun Ke Chen Tao Guojia Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期204-217,共14页
Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired ... Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired large open-circuit voltage(VOC)loss due to light-induced phase segregation and severe non-radiative recombination loss.Herein,antimony potassium tartrate(APTA)is added to perovskite precursor as a multifunctional additive that not only coordinates with unbonded lead but also inhibits the migration of halogen in perovskite,which results in suppressed non-radiative recombination,inhibited phase segregation and better band energy alignment.Therefore,a APTA auxiliary WBG PSC with a champion photoelectric conversion efficiency of 20.35%and less hysteresis is presented.They maintain 80%of their initial efficiencies under 100 mW cm^(-2)white light illumination in nitrogen after 1,000 h.Furthermore,by combining a semi-transparent WBG perovskite front cell with a narrow-bandgap tin–lead PSC,a perovskite/perovskite four-terminal tandem solar cell with an efficiency over 26%is achieved.Our work provides a feasible approach for the fabrication of efficient tandem solar cells. 展开更多
关键词 perovskite solar cell tandem Wide bandgap Multifunctional additive
下载PDF
Analyzing the ZnO and CH_(3)NH_(3)PbI_(3) as Emitter Layer for Silicon Based Heterojunction Solar Cells
14
作者 Jasurbek Gulomov Oussama Accouche +2 位作者 Rayimjon Aliev Marc AZAB Irodakhon Gulomova 《Computers, Materials & Continua》 SCIE EI 2023年第1期575-590,共16页
Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper... Today,it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells,at a lower cost.Therefore,the aim of this paper is to analyze CH_(3)NH_(3)PbI_(3) and ZnO materials as an emitter layer for p-type silicon wafer-based heterojunction solar cells.CH_(3)NH_(3)PbI_(3) and ZnO can be synthesized using the cheap Sol-Gel method and can form n-type semiconductor.We propose to combine these two materials since CH_(3)NH_(3)PbI_(3) is a great light absorber and ZnO has an optimal complex refractive index which can be used as antireflection material.The photoelectric parameters of n-CH_(3)NH_(3)PbI_(3)/p-Si,n-ZnO/p-Si,and n-Si/p-Si solar cells have been studied in the range of 20–200 nm of emitter layer thickness.It has been found that the short circuit current for CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells is almost the same when the emitter layer thickness is in the range of 20–100 nm.Additionally,when the emitter layer thickness is greater than 100 nm,the short circuit current of CH_(3)NH_(3)PbI_(3)/p-Si exceeds that of n-ZnO/p-Si.The optimal emitter layer thickness for n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si was found equal to 80 nm.Using this value,the short-circuit current and the fill factor were estimated around 18.27 mA/cm^(2) and 0.77 for n-CH_(3)NH_(3)PbI_(3)/p-Si and 18.06 mA/cm^(2) and 0.73 for n-ZnO/p-Si.Results show that the efficiency of n-CH_(3)NH_(3)PbI_(3)/p-Si and n-ZnO/p-Si solar cells with an emitter layer thickness of 80 nm are 1.314 and 1.298 times greater than efficiency of traditional n-Si/p-Si for the same sizes.These findings will help perovskites materials to be more appealing in the PV industry and accelerate their development to become a viable alternative in the renewable energy sector. 展开更多
关键词 solar cell CH_(3)NH_(3)PbI_(3) ZNO silicon heterojunction simulation
下载PDF
Low-Temperature Growing Anatase TiO2/SnO2 Multi-dimensional Heterojunctions at MXene Conductive Network for High-Efficient Perovskite Solar Cells 被引量:7
15
作者 Linsheng Huang Xiaowen Zhou +7 位作者 Rui Xue Pengfei Xu Siliang Wang Chao Xu Wei Zeng Yi Xiong Hongqian Sang Dong Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期199-217,共19页
A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Base... A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance. 展开更多
关键词 In situ fabrication Multi-dimensional heterojunction Oxygen vacancy scramble effect Electron transport layer perovskite solar cells
下载PDF
Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management 被引量:2
16
作者 Mohammad I.Hossain Wayesh Qarony +3 位作者 Sainan Ma Longhui Zeng Dietmar Knipp Yuen Hong Tsang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期49-72,共24页
Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management.An extended Shockley-Queisser model is used to identify f... Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management.An extended Shockley-Queisser model is used to identify fundamental loss mechanisms and link the losses to the optics of solar cells.Photon management is used to minimize losses and maximize the energy conversion efficiency.The influence of photon management on the solar cell parameters of a perovskite single-junction solar cell and a perovskite/silicon solar cell is discussed in greater details.An optimized solar cell design of a perovskite/silicon tandem solar cell is presented,which allows for the realization of solar cells with energy conversion efficiencies exceeding 32%. 展开更多
关键词 perovskite solar cell tandem solar cell Thermodynamic PHOTON MANAGEMENT Detailed balance LIMIT
下载PDF
Heterojunction Incorporating Perovskite and Microporous Metal–Organic Framework Nanocrystals for Efficient and Stable Solar Cells 被引量:3
17
作者 Xuesong Zhou Lele Qiu +3 位作者 Ruiqing Fan Jian Zhang Sue Hao Yulin Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第6期203-213,共11页
In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(bt... In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(btc)6]n(In-BTC)nanocrystals and forming heterojunction light-harvesting layer.The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities,endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects.Consequently,the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency(PCE)of 20.87%,surpassing the pristine device(0.76 and 19.52%,respectively).More importantly,over 80%of the original PCE is retained after 12 days of exposure to ambient environment(25°C and relative humidity of^65%)without encapsulation,while only about 35%is left to the pristine device. 展开更多
关键词 Metal–organic framework Nanocrystal heterojunction LIGHT-HARVESTING layer perovskite solar cell
下载PDF
Composite electron transport layer for efficient N-I-P type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage 被引量:2
18
作者 Bingbing Chen Pengyang Wang +8 位作者 Renjie Li Ningyu Ren Yongliang Chen Wei Han Lingling Yan Qian Huang Dekun Zhang Ying Zhao Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期461-467,I0011,共8页
Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the ... Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the single-junction limit, while the performance of N-I-P type PSTSCs is far below the theoretical value. Here, we developed a composite electron transport layer for N-I-P type monolithic PSTSCs with enhanced open-circuit voltage(VOC) and power conversion efficiency(PCE). Lithium chloride(Li Cl) was added into the tin oxide(SnO_(2)) precursor solution, which simultaneously passivated the defects and increased the electron injection driving force at the electron transfer layer(ETL)/perovskite interface.Eventually, we achieved monolithic PSTSCs with an efficiency of 25.42% and V_(OC) of 1.92 V, which is the highest PCE and VOCin N-I-P type perovskite/Si tandem devices. This work on interface engineering for improving the PCE of monolithic PSTSCs may bring a new hot point about perovskite-based tandem devices. 展开更多
关键词 Lithium chloride additive Electron transport layer High efficiency perovskite/Si tandem solar cells
下载PDF
Graded 2D/3D(CF_(3)-PEA)_(2)FA_(0.85)MA_(0.15)Pb_(2)I_(7)/FA_(0.85)MA_(0.15)PbI_(3) heterojunction for stable perovskite solar cell with an efficiency over 23.0% 被引量:1
19
作者 Yuan Cai Jialun Wen +8 位作者 Zhike Liu Fang Qian Chenyang Duan Kun He Wenjing Zhao Sheng Zhan Shaomin Yang Jian Cui Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期480-489,共10页
The replacement of small cations with bulkier organic cations containing long alkyl chains or benzene rings to form a thin two-dimensional(2D)perovskite passivation layer on three-dimensional(3D)perovskite(2D/3D)has b... The replacement of small cations with bulkier organic cations containing long alkyl chains or benzene rings to form a thin two-dimensional(2D)perovskite passivation layer on three-dimensional(3D)perovskite(2D/3D)has become a promising strategy for improving both the efficiency and stability of perovskite solar cells(PSCs).The 2 D layer defines the interfacial chemistry and physics at the 2D/3D bilayer and endows the 2D/3D structure with better chemical and thermal stability.Herein,2D/3D(CF_(3)-PEA)_(2) FA_(0.85)MA_(0.15)Pb_(2)I_(7)/FA_(0.85)MA_(0.15)PbI_(3) planar heterojunction perovskite was produced using a facile interfacial ion exchange process.The 2 D(CF_(3)-PEA)_(2) FA_(0.85)MA_(0.15)Pb_(2)I_(7) capping layer can not only passivate the FA_(0.85)MA_(0.15)PbI_(3) film but also act as super-hydrophobic layer to inhibit water diffusion and significantly enhance the stability.The 2D capping layer can also establish a unique graded band structure at the perovskite/Spiro-OMeTAD interface and lead to p-type doping for Spiro-OMeTAD layer which is beneficial for efficient charge transport.Optimized PSCs based on this 2D/3D heterojunction yield a champion power conversion efficiency(PCE)of 23.1%and improved stability.The device maintains 84%output for 2400 h aging under ambient environmental conditions without encapsulation,and maintains 81%for 200 h under illumination with encapsulation.This work will inspire the design of more fluorinated 2D perovskite interfaces for advanced photovoltaics and beyond. 展开更多
关键词 perovskite solar cells heterojunction Two-dimensional FA_(0.85)MA_(0.15)PbI_(3) High efficiency
下载PDF
Simulations of Heterojunction and Tandem Solar Cells Based on 3C Silicon Carbide
20
作者 Kabe Moyème Lare Yendoubé +2 位作者 Ottaviani Laurent Pasquinelli Marcel Toure Moussa 《Journal of Applied Mathematics and Physics》 2020年第11期2402-2415,共14页
In order to improve the efficiency of solar cells based on cubic silicon carbide (3C-SiC), one heterojunction solar cell and two tandem structures were simulated under AM1.5 illumination using SCAPS software. The cell... In order to improve the efficiency of solar cells based on cubic silicon carbide (3C-SiC), one heterojunction solar cell and two tandem structures were simulated under AM1.5 illumination using SCAPS software. The cells’ performances were studied according to the thickness of the silicon carbide layers. Simulation results allowed to achieve an efficiency of 22.03% with a tandem junction structure using an optimal thickness of 3C-SiC layer. 展开更多
关键词 Crystalline silicon Carbide 3C-SiC SIMULATION tandem solar cells
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部