期刊文献+
共找到54,146篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and characterization of La_(0.8)Cu_(0.2) MnO_(3±δ) perovskite-type catalyst for methane combustion 被引量:2
1
作者 何方 王华 戴永年 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第3期691-696,共6页
La<sup>0.8 Cu<sup>0.2 MnO<sup>3±δ perovskite-type catalyst for methane combustion prepared through sol-gel process was characterized by X-ray Diffractometry(XRD), X-ray Photoelectron Spectros... La<sup>0.8 Cu<sup>0.2 MnO<sup>3±δ perovskite-type catalyst for methane combustion prepared through sol-gel process was characterized by X-ray Diffractometry(XRD), X-ray Photoelectron Spectroscopy(XPS) and Scanning Electron Microscopy(SEM). XPS analyses reveal that the surface characteristics of the catalyst are changed. The lattice defects and oxygen vacancies on the catalyst surface are enhanced due to a part of La3+ being substituted by Cu2+ . Temperature-programmed-desorption(TPD) and temperature-programmed-reduction(TPR) analyses were carried out to study the catalytic behavior. It is found that there are two O2-desorption peaks at 350℃ and 650℃ in the TPD pattern, and two CH4-consumption peaks at 420℃ and 750℃ in the TPR patterns respectively, which indicates that the two kinds of oxygen species, so-called α and β oxygen, can react with the methane during catalytic combustion process. The catalytic activity tests were performed in a fixed-bed reactor, and the results show that the T<sup>1/2 at which the conversion of methane attains 50% of La<sup>0.8 Cu<sup>0.2 MnO<sup>3±δ is lower by 55℃ than that of LaMnO3. This indicates that the catalytic activity of-La<sup>0.8 Cu<sup>0.2 MnO<sup>3±δ is increased with partial substitution of Cu2+ for La3+ .- 展开更多
关键词 钙铁矿催化剂 甲烷燃烧 溶胶-凝胶法 TPD-TPR-MS特征
下载PDF
Direct decomposition of nitric oxide in low temperature over iron-based perovskite-type catalyst modified by Ru
2
作者 李丽 张密林 +3 位作者 袁福龙 史克英 张国 张丹 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第5期568-570,共3页
Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the expe... Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the experimental conditions. The catalytic activity of La 0.9Ce 0.1Fe 0.8-nCo 0.2RunO3 (n=0.01,0.03,0.05,0.07,0.09)series for the NO, NO-CO two components, CO-HC-NO three components were also analyzed. The catalytic investigation evidenced that the presence of Ru is necessary for making highly activity in decomposition of nitric oxide even at low temperature(400 ℃)and La 0.9Ce 0.9Fe 0.75Co 0.2Ru 0.05O3 (n=0.05) has better activity in all the samples, the conversion of it is 58.5%. With the reducing gas(CO,C3H6)added into the gas, the catalyst displayed very high activity in decomposition of NO and the conversion of it is 80% and 92.5% separately. 展开更多
关键词 钙钛矿 铁基复合物 催化剂 直接分解 氧化一氮 低温 催化活性
下载PDF
Removal of VOCs from gas streams with double perovskite-type catalysts 被引量:8
3
作者 Kuan Lun Pan Guan Ting Pan +1 位作者 Siewhui Chong Moo Been Chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第7期205-216,共12页
Double perovskite-type catalysts including La2 CoMnO6 and La2 CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds(VOCs), and single perovskites(La CoO3, LaMnO3, and La Cu O3) ar... Double perovskite-type catalysts including La2 CoMnO6 and La2 CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds(VOCs), and single perovskites(La CoO3, LaMnO3, and La Cu O3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity(GHSV) of 30,000 hr^-1, and the temperature range of100–600℃ for C7H8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene(C7H8) can be completely oxidized to CO2 at 300℃ as La2 Co MnO6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen,leading to higher activity. Additionally, apparent activation energy of 68 k J/mol is calculated using Mars-van Krevelen model for C7 H8 oxidation with La2 Co Mn O6 as catalyst. For durability test, both La2 Co Mn O6 and La2 CuMnO6 maintain high C7 H8 removal efficiencies of 100% and98%, respectively, at 300℃ and 30,000 hr^-1, and they also show good resistance to CO2(5%) and H2 O(g)(5%) of the gas streams tested. For various VOCs including isopropyl alcohol(C3H8 O),ethanal(C2H4O), and ethylene(C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300–350℃, indicating that double perovskites are promising catalysts for VOCs removal. 展开更多
关键词 Volatile organic compounds(VOCs) Toluene(C7H8) Double perovskite-type catalyst Catalysis Activation energy
原文传递
Simultaneous catalytic removal of NOx and diesel soot particulate over perovskite-type oxides and supported Ag catalysts 被引量:4
4
作者 LiuZM HaoZP 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期289-295,共7页
A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalyst... A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot. 展开更多
关键词 perovskite type catalysts supported Ag catalyst NOx diesel soot
下载PDF
光学体表成像设备Catalyst的故障维修案例及日常保养方法
5
作者 彭旭东 张俞 +1 位作者 何垠波 李光俊 《中国医疗设备》 2024年第4期169-173,180,共6页
本文介绍了光学体表成像设备Catalyst HD的工作原理,以及处理常见的硬件和软件故障的方法,并提供了日常维护保养方法。其中,对于硬件故障,利用Catalyst HD系统的MutilZsn软件来判断Catalyst投影器和摄像头故障,对于软件故障方面,探讨了C... 本文介绍了光学体表成像设备Catalyst HD的工作原理,以及处理常见的硬件和软件故障的方法,并提供了日常维护保养方法。其中,对于硬件故障,利用Catalyst HD系统的MutilZsn软件来判断Catalyst投影器和摄像头故障,对于软件故障方面,探讨了Catalyst HD系统在医用直线加速器上常见的Authorization Pending联锁问题的触发原因。本文为科室更好地开展光学体表引导放疗技术,高效地运用好设备提供参考意见。 展开更多
关键词 光学体表引导放射治疗 catalyst 故障维修 维护保养
下载PDF
Molybdenum tailored Co^(0)/Co^(2+)active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas
6
作者 Yi Wu Pengfei Song +2 位作者 Ningyan Li Yanan Jiang Yuan Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期279-289,共11页
Selective synthesis of ethanol from syngas under the Co-based catalysts is still challenging due to the hard of regulating the active site Co^(0) and Co^(2+)ratio.In this work,a series of CaTi_(0.9-x)Co_(x)Mo_(0.1)O_(... Selective synthesis of ethanol from syngas under the Co-based catalysts is still challenging due to the hard of regulating the active site Co^(0) and Co^(2+)ratio.In this work,a series of CaTi_(0.9-x)Co_(x)Mo_(0.1)O_(3)(x=0,0.1-0.4)and CaTi_(0.7)Co_(0.3)O_(3) catalysts were prepared by using citric acid complexation method to promote the synthesis of ethanol.It was found that Mo species in the perovskite lattice can regulate the Co^(0) and Co^(2+)ratio through the domain-limiting effect of perovskite and the degree of Co reduction could be adjusted by changing the Co/Mo molar ratio.Among these investigated catalysts,the total selectivity of alcohols over the catalyst with the optimal Co/Mo ratio CaTi_(0.6)Co_(0.3)Mo_(0.1)O_(3) reached 39.1%,with ethanol accounting for 74.7%,which was ascribed to the moderate and tightly bound ratio of dissociative to non-dissociative adsorption sites on the surface and the balance of CH_(x)-CH_(y) coupling and C^(O) insertion. 展开更多
关键词 Direct ethanol synthesis Cobalt MOLYBDENUM SYNGAS perovskite-type oxides
下载PDF
Macroporous perovskite-type complex oxide catalysts of La_(1-x)K_xCo_(1-y)Fe_yO_3 for diesel soot combustion 被引量:5
7
作者 张桂臻 赵震 +4 位作者 刘坚 徐俊峰 荆延妮 段爱军 姜桂元 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期955-960,共6页
A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This m... A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ... 展开更多
关键词 macroporous perovskite-type oxides diesel engine exhaust SOOT catalytic combustion rare earths
下载PDF
Perovskite-type lanthanum ferrite based photocatalysts:Preparation,properties,and applications 被引量:2
8
作者 Muhammad Humayun Habib Ullah +4 位作者 Muhammad Usman Aziz Habibi-Yangjeh Asif Ali Tahir Chundong Wang Wei Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期314-338,I0009,共26页
Clean energy and a sustainable environment are grand challenges that the world is facing which can be addressed by converting solar energy into transportable and storable fuels(chemical fuel).The main scientific and t... Clean energy and a sustainable environment are grand challenges that the world is facing which can be addressed by converting solar energy into transportable and storable fuels(chemical fuel).The main scientific and technological challenges for efficient solar energy conversion,energy storage,and environmental applications are the stability,durability,and performance of low-cost functional materials.Among different nanomaterials,perovskite type LaFeO_(3)has been extensively investigated as a photocatalyst due to its abundance,high stability,compositional and structural fexibility,high electrocatalytic activity,efficient sunlight absorption,and tunable band gap and band edges.Hence,it is urgent to write a comprehensive review to highlight the trend,challenges,and prospects of LaFeO_(3)in the field of photocatalytic solar energy conversion and environment purification.This critical review summarizes the history and basic principles of photocatalysis.Further,it reviews in detail the LaFeO_(3),applications,shortcomings,and activity enhancement strategies including the design of nanostructures,elemental doping,and heterojunctions construction such as Type-I,Type-II,Z-Type,and uncommon heterojunctions.Besides,the optical and electronic properties,charge carriers separation,electron transport phenomenon and alignment of the band gaps in LaFeO_(3)-based heterostructures are comprehensively discussed. 展开更多
关键词 perovskite-type LaFeO_(3) Solar fuel PHOTOCATALYSIS Doping HETEROSTRUCTURES
下载PDF
XANES AND XPS STUDIES OF PEROVSKITE-TYPE CATALYSTS
9
作者 王其武 姜明 +2 位作者 季明荣 吴建新 黄念祖 《Chinese Science Bulletin》 SCIE EI CAS 1988年第15期1251-1255,共5页
I.INTRODUCTION The perovskite-type compounds, as one kind of new functional materials has received more and more attention owing to their perfect crystal structure, unique electromagnetic properties, and high catalyti... I.INTRODUCTION The perovskite-type compounds, as one kind of new functional materials has received more and more attention owing to their perfect crystal structure, unique electromagnetic properties, and high catalytic activities for oxidation and hydrogena- 展开更多
关键词 XANES XPS perovskite-type catalystS CHEMICAL SHIFT
原文传递
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
10
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery Catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Fullerenes and derivatives as electrocatalysts: Promises and challenges
11
作者 Kun Guo Ning Li +1 位作者 Lipiao Bao Xing Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期7-27,共21页
Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design princi... Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites.Distinct from sp2-conjugated graphene and carbon nanotube,fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community.For instance,the well-defined atomic and molecular structures,the good electron affinity to tune the electronic structures of other substances,the intermolecular self-assembly into superlattices,and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon ma-terials.As increasing studies are being reported on this intriguing topic,it is necessary to provide a state-of-the-art overview of the recent progress.This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives.The content is structured according to the composition and structure of fullerene,including intact fullerene(e.g.,fullerene composite and superlattices)and fullerene derivatives(e.g.,doped,endohedral,and disintegrated fullerene).The synthesis,characterization,catalytic mechanisms,and deficiencies of these fullerene-based materials are explicitly elaborated.We conclude it by sharing our perspectives on the key aspects that future efforts shall consider. 展开更多
关键词 FULLERENE Fullerene derivative Metal-free catalyst Structural defect ELECTROcatalyst
下载PDF
Efficient and stable PtFe alloy catalyst for electrocatalytic methanol oxidation with high resistance to CO
12
作者 Qian Yang Sifan Zhang +5 位作者 Fengshun Wu Lihua Zhu Guang Li Mingzhi Chen An Pei Yingliang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期327-336,I0008,共11页
Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter... Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts. 展开更多
关键词 Alloy catalyst PTFE Methanol oxidation In-situ FTIR CO resistance
下载PDF
Catalyst光学体表监测在左侧乳腺癌ABC-DIBH放射治疗中的应用
13
作者 刘剑锋 钟鹤立 +4 位作者 张光伟 吴何苟 刘婷婷 高勇 李彬 《中国医疗设备》 2024年第1期61-66,共6页
目的 探讨在应用主动呼吸控制(Active Breathing Control,ABC)技术的左侧乳腺癌深吸气屏气(Deep Inspiration Breath Hold,DIBH)放疗中,使用光学体表追踪技术监测屏气的有效性和体位的重复性效果,以保证患者在放疗中吸气方式一致和体位... 目的 探讨在应用主动呼吸控制(Active Breathing Control,ABC)技术的左侧乳腺癌深吸气屏气(Deep Inspiration Breath Hold,DIBH)放疗中,使用光学体表追踪技术监测屏气的有效性和体位的重复性效果,以保证患者在放疗中吸气方式一致和体位不变,提高放射治疗的精确性。方法 选取应用ABC技术放疗的23例左侧乳腺癌患者为研究对象,以Catalyst进行治疗中DIBH体位监测,以分次内锥形束计算机断层扫描(Cone Beam Computed Tomography,CBCT)为参考标准,分别记录二者误差数据,应用Pearson法和Bland-Altman法分别评估两组误差的相关性和两种系统的一致性。将光学体表监测值与CBCT配准误差值之间的差值定义为Catalyst体表监测精度。结果 Catalyst监测在左右(x轴)方向、头脚(y轴)方向和前后(z轴)方向误差分别为(0.08±1.04)、(1.44±2.15)、(0.45±1.69)mm,CBCT配准误差分别为(0.15±1.15)、(1.51±2.28)、(0.44±1.81)mm。x轴方向和z轴方向相关系数r值分别为0.60、0.77,呈强相关;y轴方向r值为0.82,呈极强相关。二者95%CI值在x、y与z轴方向分别为[-2.01,1.86]、[-2.69,2.57]、[-2.32,2.34] mm,Catalyst监测精度在x、y、z轴方向分别为(-0.08±0.99)、(-0.06±1.34)、(0.01±1.19)mm。结论 Catalyst可有效监测使用ABC进行治疗左侧乳腺癌患者的屏气状态,能准确且实时监测患者位置,提高治疗精确度,具有临床应用价值。 展开更多
关键词 catalyst 光学体表追踪 主动呼吸控制 左侧乳腺癌 放射治疗
下载PDF
Efficient Direct Decomposition of NO over La_(0.8)A_(0.2)NiO_(3)(A=K, Ba, Y) Catalysts under Microwave Irradiation
14
作者 王浩 ZHAO Zijian +1 位作者 DUAN Xinghui ZHOU Shijia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期17-23,共7页
La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(... La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(3)catalysts were characterized by XRD and H_(2) temperature-programmed reduction (TPR).The effects of reaction temperature,oxygen concentration,and gas flow rate on the direct decomposition of nitric oxide over the synthesized catalysts were studied under microwave irradiation (2.45 GHz).The XRD results indicated that the La_(0.8)A_(0.2)NiO_(3) catalysts formed an ABO_(3) perovskite structure,and the H_(2)-TPR results revealed that the relative reducibility of the catalysts increased in the order of La_(0.8)K_(0.2)NiO_(3)>La_(0.8)Ba_(0.2)NiO_(3)>La_(0.8)Y_(0.2)Ni O_(3).Under microwave irradiation,the highest NO conversion amounted to 98.9%,which was obtained with the La_(0.8)K_(0.2)NiO_(3) catalyst at 400℃.The oxygen concentration did not inhibit the NO decomposition on the La_(0.8)A_(0.2)NiO_(3) catalysts,thus the N_(2) selectivity exceeded 99.8%under excess oxygen at 550℃.The NOconversion of the La_(0.8)A_(0.2)NiO_(3) catalysts decreased linearly with the increase in the gas flow rate. 展开更多
关键词 microwave catalysis direct decomposition of NO microwave-absorbing heating ceramics perovskite catalyst
下载PDF
An effective catalyst carrier SiO_(2):Enhancing catalytic and combustion properties of CuFe_(2)O_(4)on energetic components
15
作者 Li Ding Chong Wan +2 位作者 Suhang Chen Zhao Qin Kangzhen Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期383-392,共10页
To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_... To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant. 展开更多
关键词 Copper ferrite Silicon dioxide Combustion catalyst Thermal decomposition Laser ignition
下载PDF
100 W-class green hydrogen production from ammonia at a dual-layer electrode containing a Pt-Ir catalyst for an alkaline electrolytic process
16
作者 Donghyun Yoon Sunki Chung +2 位作者 Minjun Choi Eunhyeok Yang Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期352-360,I0009,共10页
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i... Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER). 展开更多
关键词 Ammonia oxidation Dual-layer catalyst Green hydrogen Electrolytic process Oxygen evolution reaction
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
17
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Realizing methanol synthesis from CO and water via the synergistic effect of Cu^(0)/Cu^(+)over Cu/ZrO_(2) catalyst
18
作者 Yuan Fang Fan Wang +10 位作者 Yang Chen Qian Lv Kun Jiang Hua Yang Huibo Zhao Peng Wang Yuyan Gan Lizhi Wu Yu Tang Xinhua Gao Li Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期126-134,I0004,共10页
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ... The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor. 展开更多
关键词 H_(2)O CO METHANOL Cu-based catalysts t-ZrO_(2)
下载PDF
Preparation of Modified UiO-66 Catalyst and Its Catalytic Performance for NH_(3)-SCR Denitration
19
作者 吴彦霞 梁海龙 +2 位作者 CHEN Yufeng HU Liming WANG Chunpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期261-267,共7页
Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv... Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃. 展开更多
关键词 UiO-66 catalyst catalytic denitration NH_(3)-SCR MODIFIED
下载PDF
Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates
20
作者 Karl Adrian Gandionco Juwon Kim +2 位作者 Lieven Bekaert Annick Hubin Jongwoo Lim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期64-117,共54页
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ... The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels. 展开更多
关键词 ELECTROCATALYSIS electrochemical CO_(2)reduction hydrocarbons OXYGENATES single-atom catalysts
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部