Clean energy and a sustainable environment are grand challenges that the world is facing which can be addressed by converting solar energy into transportable and storable fuels(chemical fuel).The main scientific and t...Clean energy and a sustainable environment are grand challenges that the world is facing which can be addressed by converting solar energy into transportable and storable fuels(chemical fuel).The main scientific and technological challenges for efficient solar energy conversion,energy storage,and environmental applications are the stability,durability,and performance of low-cost functional materials.Among different nanomaterials,perovskite type LaFeO_(3)has been extensively investigated as a photocatalyst due to its abundance,high stability,compositional and structural fexibility,high electrocatalytic activity,efficient sunlight absorption,and tunable band gap and band edges.Hence,it is urgent to write a comprehensive review to highlight the trend,challenges,and prospects of LaFeO_(3)in the field of photocatalytic solar energy conversion and environment purification.This critical review summarizes the history and basic principles of photocatalysis.Further,it reviews in detail the LaFeO_(3),applications,shortcomings,and activity enhancement strategies including the design of nanostructures,elemental doping,and heterojunctions construction such as Type-I,Type-II,Z-Type,and uncommon heterojunctions.Besides,the optical and electronic properties,charge carriers separation,electron transport phenomenon and alignment of the band gaps in LaFeO_(3)-based heterostructures are comprehensively discussed.展开更多
Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spect...Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.展开更多
Sunlight-driven photocatalysis,which can produce clean fuels and mitigate environmental pollution,has received extensive research attention due to its potential for addressing both energy shortages and environmental c...Sunlight-driven photocatalysis,which can produce clean fuels and mitigate environmental pollution,has received extensive research attention due to its potential for addressing both energy shortages and environmental crises.Bismuth(Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures,exhibit promising applications in solar-driven photocatalysis.Oxygen vacancy(OV)engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation.Based on OV engineering,this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods,regulation strategies,and applications in photocatalytic field.The synthetic methods of Bibased photocatalysts with OVs(BPOVs)are classified into hydrothermal,solvothermal,ultraviolet light reduction,calcination,chemical etching,and mechanical methods based on different reaction types,which provide the possibility for the structural regulation of BPOVs,including dimensional regulation,vacancy creation,elemental doping,and heterojunction fabrication.Furthermore,this review also highlights the photocatalytic applications of BPOVs,including CO_(2)reduction,N2 fixation,H2 generation,O_(2)evolution,pollutant degradation,cancer therapy,and bacteria inactivation.Finally,the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.展开更多
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4...With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.展开更多
A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocataly...A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocatalyst was found to show good stability for tetracycline degradation.The sample not only retained the magnetic properties of Fe_3O_4,allowing it to be recycled,but its photocatalytic properties could also be changed by controlling the temperature of the reaction system.The degradation intermediate products of tetracycline were further investigated by MS.This work provides a new facile strategy for the development of intelligent and recyclable photocatalytic materials.展开更多
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, ...Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.展开更多
A series of nanocrystalline V-doped (0.0-3.0 at.%) TiO2 catalysts have been successfully prepared by the one-step solution combustion method using urea as a fuel. The obtained powders were characterized by XRD, SEM,...A series of nanocrystalline V-doped (0.0-3.0 at.%) TiO2 catalysts have been successfully prepared by the one-step solution combustion method using urea as a fuel. The obtained powders were characterized by XRD, SEM, Raman, XPS and UV-Vis DRS. The effects of V doping concentration on the phase structure and photocatalytic properties were investigated. XRD, Raman, and XPS show that V doping diffuses into TiO2 crystal lattice mainly in the form of V5+ and causes a phase transition from anatase to mille. V doping can widen the light absorption range of TiO2, with the absorption threshold wavelength shifting from 425 to 625 nm. The photocatalytic activity of V-doped TiO2 powders were evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. It is found that V doping enhances the photoeatalyilc activity under visible light irradiation and the optimal degradation rate of MO is about 95.8% with 1.0 at% V-doped TiO2.展开更多
In this contribution, an efficient and simple two-step hybrid electrochemical-thermal route was developed for the synthesis of cubic shaped Zn_2SnO_4 (ZTO) nanoparticles using aqueous sodium bicarbonate(NaHCO_3) and s...In this contribution, an efficient and simple two-step hybrid electrochemical-thermal route was developed for the synthesis of cubic shaped Zn_2SnO_4 (ZTO) nanoparticles using aqueous sodium bicarbonate(NaHCO_3) and sodium stannate(Na_2SnO_3) electrolyte. The sacrificial Zn was used as anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were respectively varied from 30 to 120 mmol and 0.05 to 1.5 A/dm^2. The electrochemically generated precursor was calcined for an hour at different range of temperature from 60 to 600. The crystallite sizes in the range of 24-53 nm were calculated based on Debye-Scherrer equation. Scanning electron microscope and transmission electron microscopy results reveal that all the particles have cubic morphology with diameter of40-50 nm. The as-prepared ZTO samples showed higher catalytic activity towards the degradation of methylene blue(MB) dye, and 90% degradation was found for the sample calcined at 600, which is greater than that of commercial TiO_2-P25 photocatalysts. The photodegradation efficiency of ZTO samples was found to be a function of exposure time and the dye solution p H value. These results indicate that the ZTO nanoparticles may be employed to remove dyes from wastewater.展开更多
Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spect...Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.展开更多
Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to de...Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.展开更多
The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the ...The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the Fe content during the liquid-phase oxidation of tetracycline, which showed an enhancement at the low Fe content. The XRD, Raman, XPS, and UV-Vis absorp- tion spectra indicated that the crystalline structure of the Ti/Fe complex particles changed from anatase phase to rutile phase when the Fe content increased. The isolated Fe203, Fe304, FeO species were observed and Fe3+ ions were highly dispersed in the TiO2 matrixes, then Ti-O-Fe species were formed. These species increased the surface defects of the Ti/Fe particles. Also, ac- tive hydroxyl radicals could be generated in the catalytic transformation, which led to the higher activity of the catalyst than bare Ti02 for the degradation of tetracycline.展开更多
Inorganic-organic hybrid materials are promising for application in the field of photocatalysis because of their excellent properties.Therefore,their syntheses,mechanisms,and applications are reviewed in this paper.Fi...Inorganic-organic hybrid materials are promising for application in the field of photocatalysis because of their excellent properties.Therefore,their syntheses,mechanisms,and applications are reviewed in this paper.First,we introduce the role of inorganic-organic photocatalysts,their advantages and disadvantages,and their design principles.Second,we present the top-down and bottom-up synthesis methods of the hybrid materials.The interaction between inorganic and organic components in hybrid materials is discussed,followed by how to improve inorganic-organic photocatalysts.Third,the applications of hybrid materials in the field of photocatalysis,such as realizing hydrogen evolution,organic pollutant degradation,heavy metals and CO_(2) reduction,sterilization,and nitrogen fixation,are examined.Finally,the application prospects and development directions of inorganic-organic hybrid materials are explored and the unsolved problems are described.展开更多
A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This m...A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ...展开更多
COconversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of COt...COconversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of COto useful solar fuels such as CO, CH, CHOH, and CHOH. Among studied formulations, Cubased photocatalysts are the most attractive for COconversion because the Cu-based photocatalysts are low-cost and abundance comparing noble metal-based catalysts. In this literature review, a comprehensive summary of recent progress on Cu-based photocatalysts for COconversion, which includes metallic copper, copper alloy nanoparticles(NPs), copper oxides, and copper sulfides photocatalysts, can be found. This review also included a detailed discussion on the correlations of morphology, structure, and performance for each type of Cu-based catalysts. The reaction mechanisms and possible pathways for productions of various solar fuels were analyzed, which provide insight into the nature of potential active sites for the catalysts. Finally, the current challenges and perspective future research directions were outlined, holding promise to advance Cu-based photocatalysts for COconversion with much-enhanced energy conversion efficiency and production rates.展开更多
Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and st...Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar- to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water- splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.展开更多
Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of ...Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of photogenerated carriers hinder the further improvement of the photocatalytic performance of Bi_(2)WO_(6).Herein,we provide a systematic review for the recent advances on Bi_(2)WO_(6)‐based photocatalysts.It starts with the crystal structure,optical properties and photocatalytic fundamentals of Bi_(2)WO_(6).Then,we focus on the modification strategies of Bi_(2)WO_(6)based on morphology control,atomic modulation and composite fabrication for diverse photocatalytic applications,such as organic synthesis,water splitting,CO2 reduction,water treatment,air purification,bacterial inactivation,etc.Finally,some current challenges and future development prospects are proposed.We expect that this review can provide a useful reference and guidance for the development of efficient Bi_(2)WO_(6)photocatalysts.展开更多
TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the...TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.展开更多
Magnetic TiO2/SiO2/NiFe204 composite photocatalytic particles with high crystalline TiO2 shell were synthesized via a mild solution route. The prepared composite particles were characterized with X-ray diffraction(XR...Magnetic TiO2/SiO2/NiFe204 composite photocatalytic particles with high crystalline TiO2 shell were synthesized via a mild solution route. The prepared composite particles were characterized with X-ray diffraction(XRD), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM), scanning electron microscopy(SEM), ultraviolet-visible(UV-Vis) spectroscopy and vibrating sample magnetometer(VSM). The results show that the obtained TiO2/SiO2/NiFe2O4 composite particles were composed of spherical nanoparticles, about 30 nm in diameter, with several NiFe/O4 fine particles about 20 nm in diameter as cores and silica as coatings and barrier layers between the magnetic cores and titania shells. The photocatalytic activity of the composite photocatalytic particles was also investigated for the degradation of Basic Violet 5BN(BV5) under UV irradiation. About 97% of original BV5 decomposed in 360 min in the presence of magnetic composite nanoparticles under UV light. The synthesized magnetic composite nanoparticles exhibited high photocatalytic efficiency that would find potential application to cleaning polluted water with the help of magnetic separation.展开更多
The magnetically separable ternary polyetherimide/titanate@Fe3O4(PTF) photocatalysts of special heterostructure between magnetite(Fe3O4) microspheres and titanates nanosheets modified by polyetherimide(PEI) were succe...The magnetically separable ternary polyetherimide/titanate@Fe3O4(PTF) photocatalysts of special heterostructure between magnetite(Fe3O4) microspheres and titanates nanosheets modified by polyetherimide(PEI) were successfully fabricated via a simple facile hydrothermal deposition method. The as-prepared photocatalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Transmission electron microscopy and UV-vis diffuse reflectance spectroscopy etc. The results showed that the as-fabricated material had a structure of Fe3O4microspheres coated with titanates nanosheets modified by PEI. The special interfacial contact between 3 D microsphere and 2 D nanosheets in the nanoarchitectures was formed via electrostatic attraction. Furthermore, the resulted photocatalysts were tested by degradation reaction of methylene blue under visible light irradiation and demonstrated an enhanced performance than the pure Fe3O4microspheres, and the photocatalytic activity enhanced with the molar ratio of Fe3O4microspheres and modified titanate gradually, which was attributed to the expansion of the surface area and the different electrostatic contact between the Fe3O4microspheres and titanate nanosheets. Moreover, the obtained results revealed the high yield magnetic separation and efficient reusability of PTF-5(96.7%) over 3 times reuse.展开更多
In recent years,the excessive use of antibiotics has become a serious problem for human health.BiV04 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics.In thi...In recent years,the excessive use of antibiotics has become a serious problem for human health.BiV04 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics.In this paper,we fabricated Bi/BiV04 plasmonic photocatalysts which enhanced the photocatalytic activity of BiV04 for degradation of tetracycline(TC)antibiotic.The Bi/BiV04 photocatalysts were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and high-resolution transmission electron microscopy.In addition,the photocatalytic experiment results show that the 0.04-Bi/BiVO4 sample has the best photocatalytic activity for 2 times than the pure BiV04 photocatalyst.The cycle experiments,after four repetitions of the experiments,showed the sample still maintained a high photocatalytic activity.Finally,the photocatalytic reaction mechanism was also studied by free radical capture experiments and electron paramagnetic resonance spectroscopy.展开更多
基金financially supported by the Ministry of Science and Technology of China(Grant No.2018YFA0702100)the National Natural Science Foundation of China(Grant Nos.11874169,51972129)+3 种基金the National Key R&D Program of China(Grant No.2017YFE0120500)the Key Research and Development Program of Hubei(Grant No.2020BAB079)the South Xinjiang Innovation and Development Program of Key Industries of Xinjiang Production and Construction Corps(Grants No.2020DB002)the Hubei‘‘Chu-Tian Young Scholar”program.
文摘Clean energy and a sustainable environment are grand challenges that the world is facing which can be addressed by converting solar energy into transportable and storable fuels(chemical fuel).The main scientific and technological challenges for efficient solar energy conversion,energy storage,and environmental applications are the stability,durability,and performance of low-cost functional materials.Among different nanomaterials,perovskite type LaFeO_(3)has been extensively investigated as a photocatalyst due to its abundance,high stability,compositional and structural fexibility,high electrocatalytic activity,efficient sunlight absorption,and tunable band gap and band edges.Hence,it is urgent to write a comprehensive review to highlight the trend,challenges,and prospects of LaFeO_(3)in the field of photocatalytic solar energy conversion and environment purification.This critical review summarizes the history and basic principles of photocatalysis.Further,it reviews in detail the LaFeO_(3),applications,shortcomings,and activity enhancement strategies including the design of nanostructures,elemental doping,and heterojunctions construction such as Type-I,Type-II,Z-Type,and uncommon heterojunctions.Besides,the optical and electronic properties,charge carriers separation,electron transport phenomenon and alignment of the band gaps in LaFeO_(3)-based heterostructures are comprehensively discussed.
基金supported by Russian Science Foundation (No.#21-73-10235)
文摘Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)(No.22308336)the City University of Hong Kong start-up fund.
文摘Sunlight-driven photocatalysis,which can produce clean fuels and mitigate environmental pollution,has received extensive research attention due to its potential for addressing both energy shortages and environmental crises.Bismuth(Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures,exhibit promising applications in solar-driven photocatalysis.Oxygen vacancy(OV)engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation.Based on OV engineering,this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods,regulation strategies,and applications in photocatalytic field.The synthetic methods of Bibased photocatalysts with OVs(BPOVs)are classified into hydrothermal,solvothermal,ultraviolet light reduction,calcination,chemical etching,and mechanical methods based on different reaction types,which provide the possibility for the structural regulation of BPOVs,including dimensional regulation,vacancy creation,elemental doping,and heterojunction fabrication.Furthermore,this review also highlights the photocatalytic applications of BPOVs,including CO_(2)reduction,N2 fixation,H2 generation,O_(2)evolution,pollutant degradation,cancer therapy,and bacteria inactivation.Finally,the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.
基金supported by the National Basic Research Program of China(2011CB933700)the National Natural Science Foundation of China(21271165)~~
文摘With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.
基金supported by the National Natural Science Foundation of China(31470434,21406090,21576124,21676124,21507047)the Project of Science and Technology Development Plan of Taicang(TC2015NY05)~~
文摘A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocatalyst was found to show good stability for tetracycline degradation.The sample not only retained the magnetic properties of Fe_3O_4,allowing it to be recycled,but its photocatalytic properties could also be changed by controlling the temperature of the reaction system.The degradation intermediate products of tetracycline were further investigated by MS.This work provides a new facile strategy for the development of intelligent and recyclable photocatalytic materials.
文摘Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.
基金Funded by the National Natural Science Foundation of China(Nos.51002054,51272079)the Fundamental Research Fundsfor the Central Universities,HUST(No.2011TS014)
文摘A series of nanocrystalline V-doped (0.0-3.0 at.%) TiO2 catalysts have been successfully prepared by the one-step solution combustion method using urea as a fuel. The obtained powders were characterized by XRD, SEM, Raman, XPS and UV-Vis DRS. The effects of V doping concentration on the phase structure and photocatalytic properties were investigated. XRD, Raman, and XPS show that V doping diffuses into TiO2 crystal lattice mainly in the form of V5+ and causes a phase transition from anatase to mille. V doping can widen the light absorption range of TiO2, with the absorption threshold wavelength shifting from 425 to 625 nm. The photocatalytic activity of V-doped TiO2 powders were evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. It is found that V doping enhances the photoeatalyilc activity under visible light irradiation and the optimal degradation rate of MO is about 95.8% with 1.0 at% V-doped TiO2.
文摘In this contribution, an efficient and simple two-step hybrid electrochemical-thermal route was developed for the synthesis of cubic shaped Zn_2SnO_4 (ZTO) nanoparticles using aqueous sodium bicarbonate(NaHCO_3) and sodium stannate(Na_2SnO_3) electrolyte. The sacrificial Zn was used as anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were respectively varied from 30 to 120 mmol and 0.05 to 1.5 A/dm^2. The electrochemically generated precursor was calcined for an hour at different range of temperature from 60 to 600. The crystallite sizes in the range of 24-53 nm were calculated based on Debye-Scherrer equation. Scanning electron microscope and transmission electron microscopy results reveal that all the particles have cubic morphology with diameter of40-50 nm. The as-prepared ZTO samples showed higher catalytic activity towards the degradation of methylene blue(MB) dye, and 90% degradation was found for the sample calcined at 600, which is greater than that of commercial TiO_2-P25 photocatalysts. The photodegradation efficiency of ZTO samples was found to be a function of exposure time and the dye solution p H value. These results indicate that the ZTO nanoparticles may be employed to remove dyes from wastewater.
基金Funded by the Natural Science Foundation of Hebei Province, China (No. E2008000537)the Foundation for Development of Science and Technology of Hebei Province, China (No. 07215156)the Open Research Foundation of Key Laboratory of Advanced Civil Engineering Materials (Tongji University),Ministry of Education, China (No. 2010412)
文摘Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.
基金Supported by the National Natural Science Foundation of China(21525625,21838001)the National Basic Research Program(973 Program)of China(2014CB745100)+1 种基金the(863)High Technology Project of China(2013AA020302)the Chinese Universities Scientific Fund(JD1417)
文摘Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.
基金Shanghai Education Committee Science Development Foundation.
文摘The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the Fe content during the liquid-phase oxidation of tetracycline, which showed an enhancement at the low Fe content. The XRD, Raman, XPS, and UV-Vis absorp- tion spectra indicated that the crystalline structure of the Ti/Fe complex particles changed from anatase phase to rutile phase when the Fe content increased. The isolated Fe203, Fe304, FeO species were observed and Fe3+ ions were highly dispersed in the TiO2 matrixes, then Ti-O-Fe species were formed. These species increased the surface defects of the Ti/Fe particles. Also, ac- tive hydroxyl radicals could be generated in the catalytic transformation, which led to the higher activity of the catalyst than bare Ti02 for the degradation of tetracycline.
文摘Inorganic-organic hybrid materials are promising for application in the field of photocatalysis because of their excellent properties.Therefore,their syntheses,mechanisms,and applications are reviewed in this paper.First,we introduce the role of inorganic-organic photocatalysts,their advantages and disadvantages,and their design principles.Second,we present the top-down and bottom-up synthesis methods of the hybrid materials.The interaction between inorganic and organic components in hybrid materials is discussed,followed by how to improve inorganic-organic photocatalysts.Third,the applications of hybrid materials in the field of photocatalysis,such as realizing hydrogen evolution,organic pollutant degradation,heavy metals and CO_(2) reduction,sterilization,and nitrogen fixation,are examined.Finally,the application prospects and development directions of inorganic-organic hybrid materials are explored and the unsolved problems are described.
基金supported by the National Natural Science Foundation of China (20833011 and 20803093)the 863 Project of China (2006AA06Z346)
文摘A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ...
基金financial supports from the National 1000 Young Talents Program of Chinathe National Nature Science Foundation of China (21603078)+1 种基金the National Materials Genome Project (2016YFB0700600)financial support from Research and Education in eNergy, Environment and Water (RENEW)Institute at the University at Buffalo, SUNY
文摘COconversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of COto useful solar fuels such as CO, CH, CHOH, and CHOH. Among studied formulations, Cubased photocatalysts are the most attractive for COconversion because the Cu-based photocatalysts are low-cost and abundance comparing noble metal-based catalysts. In this literature review, a comprehensive summary of recent progress on Cu-based photocatalysts for COconversion, which includes metallic copper, copper alloy nanoparticles(NPs), copper oxides, and copper sulfides photocatalysts, can be found. This review also included a detailed discussion on the correlations of morphology, structure, and performance for each type of Cu-based catalysts. The reaction mechanisms and possible pathways for productions of various solar fuels were analyzed, which provide insight into the nature of potential active sites for the catalysts. Finally, the current challenges and perspective future research directions were outlined, holding promise to advance Cu-based photocatalysts for COconversion with much-enhanced energy conversion efficiency and production rates.
基金The authors would like to acknowledge financial support from the Australian Research Council through its DP and FF programs. Mu Xiao acknowledges support from the Australian Government Research Training Program Scholarship. Financial support from the National Natural Science Foundation of China (513228201) is also highly appreciated.
文摘Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar- to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water- splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.
文摘Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of photogenerated carriers hinder the further improvement of the photocatalytic performance of Bi_(2)WO_(6).Herein,we provide a systematic review for the recent advances on Bi_(2)WO_(6)‐based photocatalysts.It starts with the crystal structure,optical properties and photocatalytic fundamentals of Bi_(2)WO_(6).Then,we focus on the modification strategies of Bi_(2)WO_(6)based on morphology control,atomic modulation and composite fabrication for diverse photocatalytic applications,such as organic synthesis,water splitting,CO2 reduction,water treatment,air purification,bacterial inactivation,etc.Finally,some current challenges and future development prospects are proposed.We expect that this review can provide a useful reference and guidance for the development of efficient Bi_(2)WO_(6)photocatalysts.
基金supported by the National Natural Science Foundation of China(51602207,21433007,51320105001,21573170)the Self-determined and Innovative Research Funds of SKLWUT(2017-ZD-4,2016-KF-17)the Natural Science Foundation of Hubei Province of China(2015CFA001)~~
文摘TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.
基金Supported by the National Natural Science Foundation of China(No.20803089)the Fund of Science and Technology of Shanxi Province for Young Scholars,China(Nos.2007021012,2008021010)
文摘Magnetic TiO2/SiO2/NiFe204 composite photocatalytic particles with high crystalline TiO2 shell were synthesized via a mild solution route. The prepared composite particles were characterized with X-ray diffraction(XRD), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM), scanning electron microscopy(SEM), ultraviolet-visible(UV-Vis) spectroscopy and vibrating sample magnetometer(VSM). The results show that the obtained TiO2/SiO2/NiFe2O4 composite particles were composed of spherical nanoparticles, about 30 nm in diameter, with several NiFe/O4 fine particles about 20 nm in diameter as cores and silica as coatings and barrier layers between the magnetic cores and titania shells. The photocatalytic activity of the composite photocatalytic particles was also investigated for the degradation of Basic Violet 5BN(BV5) under UV irradiation. About 97% of original BV5 decomposed in 360 min in the presence of magnetic composite nanoparticles under UV light. The synthesized magnetic composite nanoparticles exhibited high photocatalytic efficiency that would find potential application to cleaning polluted water with the help of magnetic separation.
基金Funded by the National Natural Science Foundation of China(Nos.21103054,21003055,and 50872037)the Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications(Xiamen University of Technology)(No.608160030215)the Program for Innovative Research Team in Science and Technology in Fujian Province University(IRTSTFJ)
文摘The magnetically separable ternary polyetherimide/titanate@Fe3O4(PTF) photocatalysts of special heterostructure between magnetite(Fe3O4) microspheres and titanates nanosheets modified by polyetherimide(PEI) were successfully fabricated via a simple facile hydrothermal deposition method. The as-prepared photocatalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Transmission electron microscopy and UV-vis diffuse reflectance spectroscopy etc. The results showed that the as-fabricated material had a structure of Fe3O4microspheres coated with titanates nanosheets modified by PEI. The special interfacial contact between 3 D microsphere and 2 D nanosheets in the nanoarchitectures was formed via electrostatic attraction. Furthermore, the resulted photocatalysts were tested by degradation reaction of methylene blue under visible light irradiation and demonstrated an enhanced performance than the pure Fe3O4microspheres, and the photocatalytic activity enhanced with the molar ratio of Fe3O4microspheres and modified titanate gradually, which was attributed to the expansion of the surface area and the different electrostatic contact between the Fe3O4microspheres and titanate nanosheets. Moreover, the obtained results revealed the high yield magnetic separation and efficient reusability of PTF-5(96.7%) over 3 times reuse.
基金Supported by the National Natural Science Foundation of China(21522603,21503142,21671083)Six Talent Peaks Project in Jiangsu Province(XCL-025)+1 种基金the China Postdoctoral Science Foundation(2017M611720)the Excellent Youth Foundation of Jiangsu Scientific Committee(BK20170526).
文摘In recent years,the excessive use of antibiotics has become a serious problem for human health.BiV04 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics.In this paper,we fabricated Bi/BiV04 plasmonic photocatalysts which enhanced the photocatalytic activity of BiV04 for degradation of tetracycline(TC)antibiotic.The Bi/BiV04 photocatalysts were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and high-resolution transmission electron microscopy.In addition,the photocatalytic experiment results show that the 0.04-Bi/BiVO4 sample has the best photocatalytic activity for 2 times than the pure BiV04 photocatalyst.The cycle experiments,after four repetitions of the experiments,showed the sample still maintained a high photocatalytic activity.Finally,the photocatalytic reaction mechanism was also studied by free radical capture experiments and electron paramagnetic resonance spectroscopy.