In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the inte...In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.展开更多
In this letter,we review the article“Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease”.We focus specifically on the detrimental effects of alcoho...In this letter,we review the article“Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease”.We focus specifically on the detrimental effects of alcohol-associated liver disease(ALD)on human health.Given its insidious onset and increasing incidence,increasing awareness of ALD can contribute to reducing the prevalence of liver diseases.ALD comprises a spectrum of several different disorders,including liver steatosis,steatohepatitis,fibrosis,cirrhosis,and hepatocellular carcinoma.The pathogenesis of ALD is exceedingly complex.Previous studies have shown that peroxisome proliferator-activated receptors(PPARs)regulate lipid metabolism,glucose homeostasis and inflammatory responses within the organism.Additionally,their dysfunction is a major contributor to the progression of ALD.Elafibranor is an oral,dual PPARαandδagonist.The effectiveness of elafibranor in the treatment of ALD remains unclear.In this letter,we emphasize the harm of ALD and the burden it places on society.Furthermore,we summarize the clinical management of all stages of ALD and present new insights into its pathogenesis and potential therapeutic targets.Additionally,we discuss the mechanisms of action of PPARαandδagonists,the significance of their antifibrotic effects on ALD and future research directions.展开更多
The world is experiencing reflections of the intersection of two pandemics:Obesity and coronavirus disease 2019.The prevalence of obesity has tripled since 1975 worldwide,representing substantial public health costs d...The world is experiencing reflections of the intersection of two pandemics:Obesity and coronavirus disease 2019.The prevalence of obesity has tripled since 1975 worldwide,representing substantial public health costs due to its comorbidities.The adipose tissue is the initial site of obesity impairments.During excessive energy intake,it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs.The pancreas is one of the organs most affected by obesity.Once lipotoxicity becomes chronic,there is an increase in insulin secretion by pancreatic beta cells,a surrogate for type 2 diabetes mellitus(T2DM).These alterations threaten the survival of the pancreatic islets,which tend to become dysfunctional,reaching exhaustion in the long term.As for the liver,lipotoxicity favors lipogenesis and impairs beta-oxidation,resulting in hepatic steatosis.This silent disease affects around 30%of the worldwide population and can evolve into end-stage liver disease.Although therapy for hepatic steatosis remains to be defined,peroxisome proliferator-activated receptors(PPARs)activation copes with T2DM management.Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways,leading to insulin resistance relief,improved thermogenesis,and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation.This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases,focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.展开更多
Lately, the world has faced tremendous progress in the understanding of non-alcoholic fatty liver disease(NAFLD) pathogenesis due to rising obesity rates. Peroxisome proliferator-activated receptors(PPARs) are transcr...Lately, the world has faced tremendous progress in the understanding of non-alcoholic fatty liver disease(NAFLD) pathogenesis due to rising obesity rates. Peroxisome proliferator-activated receptors(PPARs) are transcription factors that modulate the expression of genes involved in lipid metabolism, energy homeostasis and inflammation, being altered in diet-induced obesity. Experimental evidences show that PPAR-alpha is the master regulator of hepatic beta-oxidation(mitochondrial and peroxisomal)and microsomal omega-oxidation, being markedly decreased by high-fat(HF) intake. PPAR-beta/delta is crucial to the regulation of forkhead box-containing protein O subfamily-1 expression and, hence, the modulation of enzymes that trigger hepatic gluconeogenesis. In addition, PPAR-beta/delta can activate hepatic stellate cells aiming to the hepatic recovery from chronic insult. On the contrary, PPAR-gamma upregulation by HF diets maximizes NAFLD through the induction of lipogenic factors, which are implicated in the fatty acid synthesis. Excessive dietary sugars also upregulate PPAR-gamma, triggering de novo lipogenesis and the consequent lipid droplets deposition within hepatocytes. Targeting PPARs to treat NAFLD seems a fruitful approach as PPAR-alpha agonist elicits expressive decrease in hepatic steatosis by increasing mitochondrial beta-oxidation, besides reduced lipogenesis. PPAR-beta/delta ameliorates hepatic insulin resistance by decreasing hepatic gluconeogenesis at postprandial stage. Total PPAR-gamma activation can exert noxious effects by stimulating hepatic lipogenesis. However, partial PPAR-gamma activation leads to benefits, mainly mediated by increased adiponectin expression and decreased insulin resistance. Further studies are necessary aiming at translational approaches useful to treat NAFLD in humans worldwide by targeting PPARs.展开更多
Objective:To discuss the effect of insulin and metformin on amethylation and glycolipid metabolism of peroxisome proliferator-activated receptor γ coactivator-1A(PPARGC1A) of rat offspring with gestational diabetes m...Objective:To discuss the effect of insulin and metformin on amethylation and glycolipid metabolism of peroxisome proliferator-activated receptor γ coactivator-1A(PPARGC1A) of rat offspring with gestational diabetes mellitus(GDM).Methods:A total of 45 pregnant rats received the intraperitoneal injection of streptozotocin to establish the pregnant rat model of GDM.A total of 21 pregnant rats with GDM were randomly divided into three groups,with 7ruts in each group,namely the insulin group,metformin group and control group.Rats in the insulin group received the abdominal subcutaneous injection of 1 mL/kg recombinant insulin glargine at 18:00 every day.Rats in the metformin group received the intragastric infusion of metformin hydrochloride at 18:00 every day,with the first dose of 300 mg/kg.The doses of two groups were adjusted every 3 d to maintain the blood glucose level at 2.65-7.62 mmol/L.Rats in the control group received the intragastric infusion of 1 mL normal saline at 18:00 every day.After the natural delivery of pregnant rats.10 offspring rats were randomly selected from each group.At birth,4 wk and 8 wk after the birth of offspring rats,the weight of offspring rats was measured.The blood glucose level of offspring rats was measured at 4wk and 8 wk,while the level of serum insulin,triglyceride and leptin was measured at 8 wk.Results:The weight of offspring rats at birth in the insulin group and metformin group was significantly lower than the one in the control group(P<0.05),and there was no significant difference at 4 wk and 8 wk among three groups(P>0.05).The fasting blood glucose and random blood glucose in the insulin group and metformin group at 4 wk and 8 wk were all significantly lower than ones in the control group(P<0.05);there was no significant difference between the insulin group and metformin group(P>0.05).The expression of PPARGC1 A mRNA in the insulin group and metformin group was significantly higher and the methylation level of PPARGC1 A was significantly lower than the one in the control group(P<0.05),but there was no significant difference between the insulin group and metformin group(P>0.05).Insulin and leptin at 8 wk in the insulin group and metformin group were significantly higher,while triglyceride was significantly lower than the one in the control group(P<0.05);triglyceride level of rats in the insulin group was significantly higher than the one in the metformin group(P<0.05).There was no significant difference in insulin and leptin level of offspring rats between the insulin group and metformin group(P>0.05).Conclusions:GDM can induce the methylation of PPARGC1 A of offspring rats to reduce the expression of PPARGC1 A mRNA and then cause the disorder of glycolipid metabolism when the offspring rats grow up;the insulin or metformin in the treatment of pregnant rats with GDM can reduce the methylation level of PPARGC1 A and thus improve the abnormal glycolipid metabolism of offspring rats.展开更多
Peroxisome proliferator-activated receptors(PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes(α, β, γ, and ...Peroxisome proliferator-activated receptors(PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes(α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin Ⅱ receptor blockers, should be studied.This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.展开更多
AIM:To test the occurrence of the Pro12Ala mutation of the peroxisome proliferator-activated receptor-γ (PPARγ)2-gene in patients with non-alcoholic fatty liver disease (NAFLD) or alcoholic fatty liver disease (AFLD...AIM:To test the occurrence of the Pro12Ala mutation of the peroxisome proliferator-activated receptor-γ (PPARγ)2-gene in patients with non-alcoholic fatty liver disease (NAFLD) or alcoholic fatty liver disease (AFLD).METHODS:DNA from a total of 622 specimens including 259 blood samples of healthy blood donors and 363 histologically categorized liver biopsies of patients with NAFLD (n=263) and AFLD (n=100) were analyzed by Real-time polymerase chain reaction using allele-specific probes.RESULTS:In the NAFLD and the AFLD collective,3% of the patients showed homozygous occurrence of the Ala12 PPARγ2-allele,differing from only 1.5% cases in the healthy population.In NAFLD patients,a high incidence of the Ala12 mutant was not associated with the progression of fatty liver disease.However,we observed a significantly higher risk (odds ratio=2.50,CI:1.05-5.90,P=0.028) in AFLD patients carrying the mutated Ala12 allele to develop inflammatory alterations.The linkage of the malfunctioning Ala12-positive PPARγ2 isoform to an increased risk in patients with AFLD to develop severe steatohepatitis and fibrosis indicates a more prominent anti-inflammatory impact of PPARγ2 in progression of AFLD than of NAFLD.CONCLUSION:In AFLD patients,the Pro12Ala single nuclear polymorphism should be studied more extensively in order to serve as a novel candidate in biomarker screening for improved prognosis.展开更多
Objective To investigate the effect of peroxisome proliferator-activated receptor-α(PPARα) and PPARγactivators on tumor necrosis factor-α(TNFα) expression in neonatal rat cardiac myocytes. Methods Primary culture...Objective To investigate the effect of peroxisome proliferator-activated receptor-α(PPARα) and PPARγactivators on tumor necrosis factor-α(TNFα) expression in neonatal rat cardiac myocytes. Methods Primary cultures of cardiac myocytes from 1- to 3-day-old Wistar rats were prepared, and myocytes were ex-posed to lipopolysaccharide (LPS) and varying concentrations of PPARαor PPARγactivator (fenofibrate or pioglitazone).RT-PCR and ELISA were used to measure TNFα, PPARα, and PPARγexpression in cultured cardiac myocytes. Transient tr-ansfection of TNFαpromoter with or without nuclear factor-kappaB (NF-κB) binding site to cardiac myocytes was performed. Results Pretreatment of cardiac myocytes with fenofibrate or pioglitazone inhibited LPS-induced TNFαmRNA and protein expression in a dose-dependent manner. However, no significant changes were observed on PPARαor PPARγmRNA expression when cardiac myocytes were pretreated with fenofibrate or pioglitazone. Proportional suppression of TNFαpromoter activity was observed when myocytes was transiently transfected with whole length of TNFαpromoter (-721/+17) after being stimulated with LPS and fenofibrate or pioglitazone, whereas no change of promoter activity was observed with transfection of TNFαreporter construct in deletion of NF-κB binding site (-182/+17). Conclusions PPARαand PPARγactivators may inhibit cardiac TNFαexpression but not accompanied by change of PPARαor PPARγmRNA expression. Therefore PPARαand PPARγactivators appear to play a role in anti-inflammation. The mechanism may partly be involved in suppression of the NF-κB pathway.展开更多
AIM: To determine the effects of prophylactic peroxisome proliferator-activated receptor (PPARy) agonist administration in an experimental model of post-endoscopic retrograde cholangiopancreatography (post-ERCP) ...AIM: To determine the effects of prophylactic peroxisome proliferator-activated receptor (PPARy) agonist administration in an experimental model of post-endoscopic retrograde cholangiopancreatography (post-ERCP) acute pancreatitis. METHODS: Post-ERCP pancreatitis was induced in male Wistar rats by infusion of contrast medium into the pancreatic duct. In additional group, rosiglitazone, a PPARγ agonist, was administered 1 h before infusion of contrast medium. Plasma and pancreas samples were obtained 6 h after the infusion. RESULTS: Infusion of contrast medium into the pancreatic duct resulted in an inflammatory process characterized by increased lipase levels in plasma, and edema and myeloperoxidase activity (MPO) in pancreas. This result correlated with the activation of nuclear factor κB (NFκB) and the inducible NO synthase (iNOS) expression in pancreatic cells. Rosiglitazone reduced the increase in lipase and the level of edema and the increase in myeloperoxidase as well as the activation of NFκB and iNOS expression. CONCLUSION: A single oral dose of rosiglitazone, given 1 h before post-ERCP pancreatitis induction is effective in reducing the severity of the subsequent inflammatory process. The protective effect of rosiglitazone was associated with NFκB inhibition and the blockage of leukocyte infiltration in pancreas.展开更多
Objective.To investigate the effect of peroxis ome proliferator-activated recept ors(PPARs )activators on plasminogen activator inhibitor ty pe-1(PAI-1)expression in human umbilical vein e ndothelial cells and the pos...Objective.To investigate the effect of peroxis ome proliferator-activated recept ors(PPARs )activators on plasminogen activator inhibitor ty pe-1(PAI-1)expression in human umbilical vein e ndothelial cells and the possi-ble mechanism.Methods.Human umbilical vein endothelial ce lls(HUVECs )were obtained from normal fetus,and cul-tured conventionally.Then the HUVECs were exposed to test agents(linolenic acid,linoleic acid,oleic acid,stearic acid and prostaglandin J 2 respectively)in varying concentrations with fresh media.RT -PCR and ELISA were applied to determine the expression of PPARs and PAI-1in HUVECs.Results.PPARα,PPARδand PPARγmRNA were detected by using RT-PCR in HUVECs.Treatment of HUVECs with PPARαand PPARγactivators---linolenic acid,linoleic acid,oleic acid and prostaglandin J 2 respectively,but not with stearic a cid could augment PAI-I mRNA expression and protein secretion in a concentration-dependent manner.However,the mRNA expressions of 3subclasses of PPAR with their activators in HUVECs were not changed compared w ith controls.Conclusion.HUVECs express PPARs.PPARs activators may increase PAI-1expression in ECs,but the underlying mechanism remains uncle ar.Although PPARs expression was not enhanced after stimulated by their activators in ECs,the role of functionally active PPARs in regulating PA I-1expression in ECs needs to be further investigated by using transient gen e transfection assay.展开更多
BACKGROUND: It has been reported that peroxisome proliferator-activated receptor γ (PPAR γ ) is highly expressed in lung cancer, colon cancer, and gastric cancer, as well as other tumors.OBJECTIVE: To study expr...BACKGROUND: It has been reported that peroxisome proliferator-activated receptor γ (PPAR γ ) is highly expressed in lung cancer, colon cancer, and gastric cancer, as well as other tumors.OBJECTIVE: To study expression of PPAR γ in pituitary adenomas and analyze the role of PPAR γ in hormonal typing of pituitary adenomas. DESIGN, TIME AND SETTING: Semi-quantitative immunohistochemistry of pathological specimens. The experiment was conducted at the Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University between January 2002 and May 2005. MATERIALS: Surgical resection samples of pituitary adenomas from 38 cases (18 male and 20 female) were analyzed. Eight cases were determined to be invasive pituitary adenomas and 30 cases were non-invasive pituitary adenomas. Hormonal classification of the types of pituitary adenomas revealed somatotrophic adenomas in six cases, corticotrophic adenoma in five cases, prolactinomas in 13 cases, multi-hormone secreting adenomas in six cases, and eight cases of adenoma without altered endocrine function. Five autopsy specimens were collected during the same period from patients of matching age that died from unrelated diseases and were included as normal anterior pituitar3, controls. METHODS: Cell counts for positive immunohistochemical signals were recorded from histopathological sections. The percentage of positive cells was reported as a semi-quantitative analysis. MAIN OUTCOME MEASURES: The rate of PPAR γ positive cells in different types of adenoma was based on hormonal levels and invasiveness of pituitary tumor cells. RESULTS: All tumor biopsies were determined to express PPAR γ. The rate of PPAR γ -positive cells ranged between 8%-65% in the pituitary adenomas. According to hormonal type, PPAR γ expression did not vary between the groups. In addition, there was no significant difference in PPAR γ expression between the non-invasive and invasive pituitary adenomas. CONCLUSIONS: Human pituitary adenomas express PPAR γ, and this expression is unrelated to hormonal type and invasiveness.展开更多
Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via a...Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage elec-tric foot shock for about 1h at 10s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress car-diomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.展开更多
Objective To explore the effect of atorvastatin on cardiac hypertrophy and to determine the potential mechanism involved. Methods An in vitro cardiomyocyte hypertrophy from neonatal rats was induced with angiotensinⅡ...Objective To explore the effect of atorvastatin on cardiac hypertrophy and to determine the potential mechanism involved. Methods An in vitro cardiomyocyte hypertrophy from neonatal rats was induced with angiotensinⅡ(Ang Ⅱ) stimulation. Before AngⅡ stimulation, the cultured rat cardiac myocytes were pretreated with atorvastatin at different concentrations(0.1, 1, and 10 μmol/L). The following parameters were evaluated: the myocyte surface area, 3H-leucine incorporation into myocytes, m RNA expressions of atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase 9, matrix metalloproteinase 2, and interleukin-1β, m RNA and protein expressions of the δ/β peroxisome proliferator-activated receptor(PPAR) subtypes. Results It was shown that atorvastatin could ameliorate Ang Ⅱ-induced neonatal cardiomyocyte hypertrophy in the area of cardiomyocytes, 3H-leucine incorporation, and the expression of atrial natriuretic peptide and brain natriuretic peptide markedly. Meanwhile, atorvastatin also inhibited the augmented m RNA level of several cytokines in hypertrophic myocytes. Furthermore, the down-regulated expression of PPAR-δ/β at both the m RNA and protein levels in hypertrophic myocytes could be significantly reversed by atorvastatin treatment. Conclusions Atorvastatin could improve AngⅡ-induced cardiac hypertrophy and inhibit the expression of cytokines. Such effect might be partly achieved through activation of the PPAR-δ/β pathway.展开更多
OBJECTIVE Oleoylethanolamide(OEA) is an endogenous peroxisome proliferatoractivated receptor alpha(PPARα) agonist that acts on the peripheral control of energy metabolism.Previous studies have shown that OEA exerts n...OBJECTIVE Oleoylethanolamide(OEA) is an endogenous peroxisome proliferatoractivated receptor alpha(PPARα) agonist that acts on the peripheral control of energy metabolism.Previous studies have shown that OEA exerts neuroprotection after cerebral ischemia.However,whether OEA affects the outcomes of diabetes-induced encephalopathy(DE) requires further study.METHODS The chronic effects of OEA on DE were evaluated in C57BL/6 and PPARαknockout mice,individually.The cognitive function was assessed with Morris water maze.The expression of receptor for advanced glycation end products(RAGE) and phosphorylation of Tau in mice hippocampus were determined using Western blotting.The influence of OEA in neuron loss and neuroplasticity were assessed with immunofluorescent staining and Western blotting.RESULTS OEA markedly ameliorated performance in the Morris water maze,which was correlated with its capabilities of suppressing glycometabolism and phosphorylation of Tau in the hippocampus.OEA offered protection from diabetes-induced impairments in hippocampal neuroplasticity.Furthermore,the changes in Morris water maze performance and neuron loss could not be observed in PPARα knockout mouse models with OEA administration.CONCLUSION The ability of OEA to control PPARα signaling can serve as a novel neuroprotective approach for the treatment of diabetes-induced encephalopathy.展开更多
This study was aimed to investigate the effect of stress induced by high-intensity exercises on the cardiovascular system. In the epidemiological investigation, 200 subjects(test group) engaged in special high-inten...This study was aimed to investigate the effect of stress induced by high-intensity exercises on the cardiovascular system. In the epidemiological investigation, 200 subjects(test group) engaged in special high-intensity exercises, and 97 who lived and worked in the same environment and conditions as those in the test group, but did not participate in the exercises served as controls. In the second part of the study, 50 mice were randomly divided into control group, exhaustive swimming group, white noise group, exhaustive swimming plus white noise group, and pioglitazone intervention group. The results showed that the plasma concentrations of the myocardial injury markers heart fatty acid-binding protein(H-FABP), C-reactive protein(CRP), β-endorphin(β-EP) and levels of psychological stress were significantly increased in test group as compared with control group; special high-intensity exercises resulted in a significant elevation of the incidence of cardiac arrhythmias. Animal experiments showed that the plasma levels of corticosterone(CORT) and troponin I(Tn I) were raised while the level of SOD was reduced in exhaustive swimming group, white noise group, and exhaustive swimming plus white noise group. The expression levels of PPARγ m RNA and protein were decreased in myocardial tissues in these groups as well. HE staining showed no remarkable change in myocardial tissues in all the groups. Treatment with pioglitazone significantly decreased the plasma levels of Tn I and CORT, while increased the level of SOD and the expression levels of PPARγ m RNA and protein. It was concluded that the high-intensity exercises may induce a heavy physical and psychological stress and predispose the subjects to accumulated fatigue and sleep deprivation; high-intensity exercises also increases the incidence of arrhythmias and myocardial injury. PPARγ may be involved in the physical and psychological changes induced by high-intensity exercises.展开更多
Background: In dairy cows circulating non-esterified fatty acids(NEFA) increase early post-partum while liver and other tissues undergo adaptation to greater lipid metabolism, mainly regulated by peroxisome proliferat...Background: In dairy cows circulating non-esterified fatty acids(NEFA) increase early post-partum while liver and other tissues undergo adaptation to greater lipid metabolism, mainly regulated by peroxisome proliferator-activated receptors(PPAR). PPAR are activated by fatty acids(FA), but it remains to be demonstrated that circulating NEFA or dietary FA activate bovine PPAR. We hypothesized that circulating NEFA and dietary FA activate PPAR in dairy cows.Methods: The dose-response activation of PPAR by NEFA or dietary FA was assessed using HP300 e digital dispenser and luciferase reporter in several bovine cell types. Cells were treated with blood plasma isolated from Jersey cows before and after parturition, NEFA isolated from the blood plasma, FA released from lipoproteins using milk lipoprotein lipase(LPL), and palmitic acid(C16:0). Effect on each PPAR isotype was assessed using specific synthetic inhibitors.Results: NEFA isolated from blood serum activate PPAR linearly up to ~ 4-fold at 400 μmol/L in MAC-T cells but had cytotoxic effect. Addition of albumin to the culture media decreases cytotoxic effects of NEFA but also PPAR activation by ~ 2-fold. Treating cells with serum from peripartum cows reveals that much of the PPAR activation can be explained by the amount of NEFA in the serum(R~2 = 0.91) and that the response to serum NEFA follows a quadratic tendency, with peak activation around 1.4 mmol/L. Analysis of PPAR activation by serum in MAC-T, BFH-12 and BPAEC cells revealed that most of the activation is explained by the activity of PPARδ and PPARγ, but not PPARα. Palmitic acid activated PPAR when added in culture media or blood serum but the activation was limited to PPARδ and PPARα and the response was nil in serum from post-partum cows. The addition of LPL to the serum increased > 1.5-fold PPAR activation.Conclusion: Our results support dose-dependent activation of PPAR by circulating NEFA in bovine, specifically δand γ isotypes. Data also support the possibility of increasing PPAR activation by dietary FA;however, this nutrigenomics approach maybe only effective in pre-partum but not post-partum cows.展开更多
Since we had previously demonstrated that siRNAs to tristetraprolin (TTP) markedly inhibited insulin stimulation of hepatic HMG-CoA reductase (HMGR) transcription, we investigated the effects of transfecting rat liver...Since we had previously demonstrated that siRNAs to tristetraprolin (TTP) markedly inhibited insulin stimulation of hepatic HMG-CoA reductase (HMGR) transcription, we investigated the effects of transfecting rat liver with TTP constructs. We found that transfecting diabetic rats with TTP did not increase HMGR transcription but rather led to modest inhibition. We then investigated whether co-transfection with protein kinase B, hepatic form (AKT2), might lead to phosphorylation and result in activation of HMGR transcription. We found that this treatment resulted in near complete inhibition of transcription. Transfection with peroxisome proliferator-activated receptor g coactivator (PGC-1a) also inhibited HMGR transcription. These results show that although TTP is needed for activation of HMGR transcription, it cannot by itself activate this process. AKT2 and PGC-1a, which mediate the activation of gluconeogenic genes by insulin, exert the opposite effect on HMGR.展开更多
Objectives The association of peroxisome prolif-erator -activated receptor delta(PPARD) +294T】C polymorphism and serum lipid levels is inconsistent in several previous studies.Bai Ku Yao is an isolated association of...Objectives The association of peroxisome prolif-erator -activated receptor delta(PPARD) +294T】C polymorphism and serum lipid levels is inconsistent in several previous studies.Bai Ku Yao is an isolated association of PPARD +294T】C(rs2016520) polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations.Methods A total of 609 subjects of Bai Ku Yao and 573 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples.Genotyping of the PPARD +294T】C polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing.Results The levels of serum total cholesterol(TC),high-density lipoprotein cholesterol(HDL-C),apolipoprotein(Apo) AI and ApoB were lower in Bai Ku Yao than in Han(P【0.001 for all).The frequency of T and C alleles was 77.50%and 22.50%in Bai Ku Yao,and 72.43%and 27.57%in Han (P【0.01);respectively.The frequency of TT,TC and CC genotypes was 60.59%,33.83%and 5.53%in Bai Ku Yao, and 52.18%,40.50%and 7.32%in Han(P【0.05);respectively. The levels of LDL-C,ApoB and the ratio of ApoAI to ApoB in Bai Ku Yao were different among the three genotypes in females but not in males(P【0.05 for all).The subjects with TT and TC genotypes had lower serum LDL-C and ApoB levels and higher the ratio of ApoAI to ApoB than the CC genotype in females.The levels of TC and ApoB in the total Han population were different among the three genotypes (P【0.05 for all).The C allele carriers had higher serum TC and ApoB levels than the C allele noncarriers.When serum lipid levels were analyzed according to sex,the difference in serum TC levels in Han was significant in males(P【0.01) but not in females,whereas the difference in serum ApoB levels was significant in females(P【0.05)but not in males. Serum TC and ApoB levels were correlated with genotypes in Han(P【0.05 for each) but not in Bai Ku Yao.Serum lipid parameters were also correlated with sex,age,body massindex, alcohol consumption,cigarette smoking,and blood pressure in both ethnic groups.Conclusions These results suggest that the association of PPARD +294T】C polymorphism and serum lipid levels is different between the Bai Ku Yao and Han populations.The discrepancy between the two ethnic groups might partly result from different PPARD +294T】C polymorphism or PPARD gene-enviromental interactions,subgroup of the Yao minority in China.展开更多
AIM: To investigate whether peroxisome proliferatoractivated receptor γ (PPAR-γ) is expressed in human gastric carcinoma and whether PPAR-γ, is a potential target for gastric carcinoma therapy. METHODS: PPAR-γ...AIM: To investigate whether peroxisome proliferatoractivated receptor γ (PPAR-γ) is expressed in human gastric carcinoma and whether PPAR-γ, is a potential target for gastric carcinoma therapy. METHODS: PPAR-γ protein in gastric carcinoma was examined by immunohistochemistry. In the gastric carcinoma cell line MGCS03, PPAR-7, survivin, Skp2 and p27 protein and mRNA were examined by Western blotting and real-time reverse transcription-polymerase chain reaction, respectively; proliferation was examined by MTT; apoptosis was examined by chromatin staining with Hoechst 33342 and fluorescence activated cell sorting (FACS). and cell cycle was examined by FACS; the knockdown of PPAR-γ was done by RNA interference. RESULTS: A high level of expression of PPAR-γ was observed in human gastric carcinoma and in a human gastric carcinoma cell line MGCS03. The PPAR-γ agonist 15-deoxy-△12,14-prostaglandin J2 (15d-PGJ2)inhibited growth, and induced apoptosis and G1/G0 cell cycle arrest in MGC803 cells in a concentration-dependent and time-dependent manner. The effect of 15d-PGJ2 on MGC803 cells was not reversed by the selective and irreversible antagonist GW9662 for PPAR-γ. Furthermore, survivin and Skp2 expression were decreased, whereas p27 expression was enhanced following 15d-PGJ2 treatment in a dose-dependent manner in MGC803 cells. Interestingly, we also found that small interfering RNA for PPAR-γ inhibited growth and induced apoptosis in MGC803 cells. The inhibition of PPAR-γ function may be a potentially important and novel modality for treatment and prevention of gastric carcinoma. CONCLUSION: A PPAR-γ agonist inhibited growth of human gastric carcinoma MGC803 cells by inducing apoptosis and G1/G0 cell cycle arrest with the involvement of survivin, Skp2 and p27 and not via PPAR-γ.展开更多
AIM: To examine the effect of troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, on the proliferation and apoptosis of human liver cancer cells. METHODS: Liver cancer cell line HepG2 was cu...AIM: To examine the effect of troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, on the proliferation and apoptosis of human liver cancer cells. METHODS: Liver cancer cell line HepG2 was cultured and treated with troglitazone. Cell proliferation was detected by 3-(4-,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; apoptosis was detected by flow cytometry and terminal deoxynucleotidyl transferase- mediated nick end labeling of DNA fragmentation sites (TUNEL) assay; and apoptosis-related protein was detected by immunocytochemistry and Western blotting. RESULTS: Troglitazone inhibited growth and induced apoptosis of HepG2 cells in a dose-dependent manner, and induced activation of caspase-3 expression. Troglitazone not only drove apoptosis-inhibiting factor survivin to translocate incompletely from the nucleus to the cytoplasm, but also inhibited expression of survivin, while it did not affect expression of apoptosis-promoting factor Bax. CONCLUSION: PPARγ ligands inhibit growth and induce apoptosis of liver cancer cells, and may have applications for the prevention and treatment of liver cancer.展开更多
文摘In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.
基金Supported by National Natural Science Foundation of China,No.82172754 and No.81874208Natural Science Foundation Project of Hubei Province,No.2021CFB562.
文摘In this letter,we review the article“Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease”.We focus specifically on the detrimental effects of alcohol-associated liver disease(ALD)on human health.Given its insidious onset and increasing incidence,increasing awareness of ALD can contribute to reducing the prevalence of liver diseases.ALD comprises a spectrum of several different disorders,including liver steatosis,steatohepatitis,fibrosis,cirrhosis,and hepatocellular carcinoma.The pathogenesis of ALD is exceedingly complex.Previous studies have shown that peroxisome proliferator-activated receptors(PPARs)regulate lipid metabolism,glucose homeostasis and inflammatory responses within the organism.Additionally,their dysfunction is a major contributor to the progression of ALD.Elafibranor is an oral,dual PPARαandδagonist.The effectiveness of elafibranor in the treatment of ALD remains unclear.In this letter,we emphasize the harm of ALD and the burden it places on society.Furthermore,we summarize the clinical management of all stages of ALD and present new insights into its pathogenesis and potential therapeutic targets.Additionally,we discuss the mechanisms of action of PPARαandδagonists,the significance of their antifibrotic effects on ALD and future research directions.
基金the Conselho Nacional de Desenvolvimento Científico e Tecnológico(Brazil),No.303785/2020-9Fundação Carlos Chagas Filho de AmparoàPesquisa do Estado do Rio de Janeiro,No.E-26/200.984/2022 for V.S-M.
文摘The world is experiencing reflections of the intersection of two pandemics:Obesity and coronavirus disease 2019.The prevalence of obesity has tripled since 1975 worldwide,representing substantial public health costs due to its comorbidities.The adipose tissue is the initial site of obesity impairments.During excessive energy intake,it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs.The pancreas is one of the organs most affected by obesity.Once lipotoxicity becomes chronic,there is an increase in insulin secretion by pancreatic beta cells,a surrogate for type 2 diabetes mellitus(T2DM).These alterations threaten the survival of the pancreatic islets,which tend to become dysfunctional,reaching exhaustion in the long term.As for the liver,lipotoxicity favors lipogenesis and impairs beta-oxidation,resulting in hepatic steatosis.This silent disease affects around 30%of the worldwide population and can evolve into end-stage liver disease.Although therapy for hepatic steatosis remains to be defined,peroxisome proliferator-activated receptors(PPARs)activation copes with T2DM management.Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways,leading to insulin resistance relief,improved thermogenesis,and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation.This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases,focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
文摘Lately, the world has faced tremendous progress in the understanding of non-alcoholic fatty liver disease(NAFLD) pathogenesis due to rising obesity rates. Peroxisome proliferator-activated receptors(PPARs) are transcription factors that modulate the expression of genes involved in lipid metabolism, energy homeostasis and inflammation, being altered in diet-induced obesity. Experimental evidences show that PPAR-alpha is the master regulator of hepatic beta-oxidation(mitochondrial and peroxisomal)and microsomal omega-oxidation, being markedly decreased by high-fat(HF) intake. PPAR-beta/delta is crucial to the regulation of forkhead box-containing protein O subfamily-1 expression and, hence, the modulation of enzymes that trigger hepatic gluconeogenesis. In addition, PPAR-beta/delta can activate hepatic stellate cells aiming to the hepatic recovery from chronic insult. On the contrary, PPAR-gamma upregulation by HF diets maximizes NAFLD through the induction of lipogenic factors, which are implicated in the fatty acid synthesis. Excessive dietary sugars also upregulate PPAR-gamma, triggering de novo lipogenesis and the consequent lipid droplets deposition within hepatocytes. Targeting PPARs to treat NAFLD seems a fruitful approach as PPAR-alpha agonist elicits expressive decrease in hepatic steatosis by increasing mitochondrial beta-oxidation, besides reduced lipogenesis. PPAR-beta/delta ameliorates hepatic insulin resistance by decreasing hepatic gluconeogenesis at postprandial stage. Total PPAR-gamma activation can exert noxious effects by stimulating hepatic lipogenesis. However, partial PPAR-gamma activation leads to benefits, mainly mediated by increased adiponectin expression and decreased insulin resistance. Further studies are necessary aiming at translational approaches useful to treat NAFLD in humans worldwide by targeting PPARs.
基金supported by Shandong Natural Science Fund(Y2008c170)
文摘Objective:To discuss the effect of insulin and metformin on amethylation and glycolipid metabolism of peroxisome proliferator-activated receptor γ coactivator-1A(PPARGC1A) of rat offspring with gestational diabetes mellitus(GDM).Methods:A total of 45 pregnant rats received the intraperitoneal injection of streptozotocin to establish the pregnant rat model of GDM.A total of 21 pregnant rats with GDM were randomly divided into three groups,with 7ruts in each group,namely the insulin group,metformin group and control group.Rats in the insulin group received the abdominal subcutaneous injection of 1 mL/kg recombinant insulin glargine at 18:00 every day.Rats in the metformin group received the intragastric infusion of metformin hydrochloride at 18:00 every day,with the first dose of 300 mg/kg.The doses of two groups were adjusted every 3 d to maintain the blood glucose level at 2.65-7.62 mmol/L.Rats in the control group received the intragastric infusion of 1 mL normal saline at 18:00 every day.After the natural delivery of pregnant rats.10 offspring rats were randomly selected from each group.At birth,4 wk and 8 wk after the birth of offspring rats,the weight of offspring rats was measured.The blood glucose level of offspring rats was measured at 4wk and 8 wk,while the level of serum insulin,triglyceride and leptin was measured at 8 wk.Results:The weight of offspring rats at birth in the insulin group and metformin group was significantly lower than the one in the control group(P<0.05),and there was no significant difference at 4 wk and 8 wk among three groups(P>0.05).The fasting blood glucose and random blood glucose in the insulin group and metformin group at 4 wk and 8 wk were all significantly lower than ones in the control group(P<0.05);there was no significant difference between the insulin group and metformin group(P>0.05).The expression of PPARGC1 A mRNA in the insulin group and metformin group was significantly higher and the methylation level of PPARGC1 A was significantly lower than the one in the control group(P<0.05),but there was no significant difference between the insulin group and metformin group(P>0.05).Insulin and leptin at 8 wk in the insulin group and metformin group were significantly higher,while triglyceride was significantly lower than the one in the control group(P<0.05);triglyceride level of rats in the insulin group was significantly higher than the one in the metformin group(P<0.05).There was no significant difference in insulin and leptin level of offspring rats between the insulin group and metformin group(P>0.05).Conclusions:GDM can induce the methylation of PPARGC1 A of offspring rats to reduce the expression of PPARGC1 A mRNA and then cause the disorder of glycolipid metabolism when the offspring rats grow up;the insulin or metformin in the treatment of pregnant rats with GDM can reduce the methylation level of PPARGC1 A and thus improve the abnormal glycolipid metabolism of offspring rats.
文摘Peroxisome proliferator-activated receptors(PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes(α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin Ⅱ receptor blockers, should be studied.This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.
基金Supported by A grant of Marga and Walter Boll foundation
文摘AIM:To test the occurrence of the Pro12Ala mutation of the peroxisome proliferator-activated receptor-γ (PPARγ)2-gene in patients with non-alcoholic fatty liver disease (NAFLD) or alcoholic fatty liver disease (AFLD).METHODS:DNA from a total of 622 specimens including 259 blood samples of healthy blood donors and 363 histologically categorized liver biopsies of patients with NAFLD (n=263) and AFLD (n=100) were analyzed by Real-time polymerase chain reaction using allele-specific probes.RESULTS:In the NAFLD and the AFLD collective,3% of the patients showed homozygous occurrence of the Ala12 PPARγ2-allele,differing from only 1.5% cases in the healthy population.In NAFLD patients,a high incidence of the Ala12 mutant was not associated with the progression of fatty liver disease.However,we observed a significantly higher risk (odds ratio=2.50,CI:1.05-5.90,P=0.028) in AFLD patients carrying the mutated Ala12 allele to develop inflammatory alterations.The linkage of the malfunctioning Ala12-positive PPARγ2 isoform to an increased risk in patients with AFLD to develop severe steatohepatitis and fibrosis indicates a more prominent anti-inflammatory impact of PPARγ2 in progression of AFLD than of NAFLD.CONCLUSION:In AFLD patients,the Pro12Ala single nuclear polymorphism should be studied more extensively in order to serve as a novel candidate in biomarker screening for improved prognosis.
基金Supported by the National Nature Science Foundation of China (30270551) and Military "10.5"Foundation (02M012).
文摘Objective To investigate the effect of peroxisome proliferator-activated receptor-α(PPARα) and PPARγactivators on tumor necrosis factor-α(TNFα) expression in neonatal rat cardiac myocytes. Methods Primary cultures of cardiac myocytes from 1- to 3-day-old Wistar rats were prepared, and myocytes were ex-posed to lipopolysaccharide (LPS) and varying concentrations of PPARαor PPARγactivator (fenofibrate or pioglitazone).RT-PCR and ELISA were used to measure TNFα, PPARα, and PPARγexpression in cultured cardiac myocytes. Transient tr-ansfection of TNFαpromoter with or without nuclear factor-kappaB (NF-κB) binding site to cardiac myocytes was performed. Results Pretreatment of cardiac myocytes with fenofibrate or pioglitazone inhibited LPS-induced TNFαmRNA and protein expression in a dose-dependent manner. However, no significant changes were observed on PPARαor PPARγmRNA expression when cardiac myocytes were pretreated with fenofibrate or pioglitazone. Proportional suppression of TNFαpromoter activity was observed when myocytes was transiently transfected with whole length of TNFαpromoter (-721/+17) after being stimulated with LPS and fenofibrate or pioglitazone, whereas no change of promoter activity was observed with transfection of TNFαreporter construct in deletion of NF-κB binding site (-182/+17). Conclusions PPARαand PPARγactivators may inhibit cardiac TNFαexpression but not accompanied by change of PPARαor PPARγmRNA expression. Therefore PPARαand PPARγactivators appear to play a role in anti-inflammation. The mechanism may partly be involved in suppression of the NF-κB pathway.
基金Supported by FIS grant PI020286 and PI050599 and Ramón y Cajal contract to Emma Folch-Puy. Susana Granell was a recipient for an IDIBAPS grant
文摘AIM: To determine the effects of prophylactic peroxisome proliferator-activated receptor (PPARy) agonist administration in an experimental model of post-endoscopic retrograde cholangiopancreatography (post-ERCP) acute pancreatitis. METHODS: Post-ERCP pancreatitis was induced in male Wistar rats by infusion of contrast medium into the pancreatic duct. In additional group, rosiglitazone, a PPARγ agonist, was administered 1 h before infusion of contrast medium. Plasma and pancreas samples were obtained 6 h after the infusion. RESULTS: Infusion of contrast medium into the pancreatic duct resulted in an inflammatory process characterized by increased lipase levels in plasma, and edema and myeloperoxidase activity (MPO) in pancreas. This result correlated with the activation of nuclear factor κB (NFκB) and the inducible NO synthase (iNOS) expression in pancreatic cells. Rosiglitazone reduced the increase in lipase and the level of edema and the increase in myeloperoxidase as well as the activation of NFκB and iNOS expression. CONCLUSION: A single oral dose of rosiglitazone, given 1 h before post-ERCP pancreatitis induction is effective in reducing the severity of the subsequent inflammatory process. The protective effect of rosiglitazone was associated with NFκB inhibition and the blockage of leukocyte infiltration in pancreas.
文摘Objective.To investigate the effect of peroxis ome proliferator-activated recept ors(PPARs )activators on plasminogen activator inhibitor ty pe-1(PAI-1)expression in human umbilical vein e ndothelial cells and the possi-ble mechanism.Methods.Human umbilical vein endothelial ce lls(HUVECs )were obtained from normal fetus,and cul-tured conventionally.Then the HUVECs were exposed to test agents(linolenic acid,linoleic acid,oleic acid,stearic acid and prostaglandin J 2 respectively)in varying concentrations with fresh media.RT -PCR and ELISA were applied to determine the expression of PPARs and PAI-1in HUVECs.Results.PPARα,PPARδand PPARγmRNA were detected by using RT-PCR in HUVECs.Treatment of HUVECs with PPARαand PPARγactivators---linolenic acid,linoleic acid,oleic acid and prostaglandin J 2 respectively,but not with stearic a cid could augment PAI-I mRNA expression and protein secretion in a concentration-dependent manner.However,the mRNA expressions of 3subclasses of PPAR with their activators in HUVECs were not changed compared w ith controls.Conclusion.HUVECs express PPARs.PPARs activators may increase PAI-1expression in ECs,but the underlying mechanism remains uncle ar.Although PPARs expression was not enhanced after stimulated by their activators in ECs,the role of functionally active PPARs in regulating PA I-1expression in ECs needs to be further investigated by using transient gen e transfection assay.
文摘BACKGROUND: It has been reported that peroxisome proliferator-activated receptor γ (PPAR γ ) is highly expressed in lung cancer, colon cancer, and gastric cancer, as well as other tumors.OBJECTIVE: To study expression of PPAR γ in pituitary adenomas and analyze the role of PPAR γ in hormonal typing of pituitary adenomas. DESIGN, TIME AND SETTING: Semi-quantitative immunohistochemistry of pathological specimens. The experiment was conducted at the Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University between January 2002 and May 2005. MATERIALS: Surgical resection samples of pituitary adenomas from 38 cases (18 male and 20 female) were analyzed. Eight cases were determined to be invasive pituitary adenomas and 30 cases were non-invasive pituitary adenomas. Hormonal classification of the types of pituitary adenomas revealed somatotrophic adenomas in six cases, corticotrophic adenoma in five cases, prolactinomas in 13 cases, multi-hormone secreting adenomas in six cases, and eight cases of adenoma without altered endocrine function. Five autopsy specimens were collected during the same period from patients of matching age that died from unrelated diseases and were included as normal anterior pituitar3, controls. METHODS: Cell counts for positive immunohistochemical signals were recorded from histopathological sections. The percentage of positive cells was reported as a semi-quantitative analysis. MAIN OUTCOME MEASURES: The rate of PPAR γ positive cells in different types of adenoma was based on hormonal levels and invasiveness of pituitary tumor cells. RESULTS: All tumor biopsies were determined to express PPAR γ. The rate of PPAR γ -positive cells ranged between 8%-65% in the pituitary adenomas. According to hormonal type, PPAR γ expression did not vary between the groups. In addition, there was no significant difference in PPAR γ expression between the non-invasive and invasive pituitary adenomas. CONCLUSIONS: Human pituitary adenomas express PPAR γ, and this expression is unrelated to hormonal type and invasiveness.
基金supported by a grant from the National Natural Science Foundation of China(No.81172898)
文摘Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage elec-tric foot shock for about 1h at 10s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress car-diomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.
基金Supported by the National Basic Research Program(973 Program)(2013CB530804)
文摘Objective To explore the effect of atorvastatin on cardiac hypertrophy and to determine the potential mechanism involved. Methods An in vitro cardiomyocyte hypertrophy from neonatal rats was induced with angiotensinⅡ(Ang Ⅱ) stimulation. Before AngⅡ stimulation, the cultured rat cardiac myocytes were pretreated with atorvastatin at different concentrations(0.1, 1, and 10 μmol/L). The following parameters were evaluated: the myocyte surface area, 3H-leucine incorporation into myocytes, m RNA expressions of atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase 9, matrix metalloproteinase 2, and interleukin-1β, m RNA and protein expressions of the δ/β peroxisome proliferator-activated receptor(PPAR) subtypes. Results It was shown that atorvastatin could ameliorate Ang Ⅱ-induced neonatal cardiomyocyte hypertrophy in the area of cardiomyocytes, 3H-leucine incorporation, and the expression of atrial natriuretic peptide and brain natriuretic peptide markedly. Meanwhile, atorvastatin also inhibited the augmented m RNA level of several cytokines in hypertrophic myocytes. Furthermore, the down-regulated expression of PPAR-δ/β at both the m RNA and protein levels in hypertrophic myocytes could be significantly reversed by atorvastatin treatment. Conclusions Atorvastatin could improve AngⅡ-induced cardiac hypertrophy and inhibit the expression of cytokines. Such effect might be partly achieved through activation of the PPAR-δ/β pathway.
基金Fun-damental Research Funds for the Central Universities (20720180042)Health Science ResearchPersonnel Training Program of Fujian Province(2018-CXB-30)+2 种基金Natural Science Foundation of Fujian, China (2016J014152016D024)Science and Technology Project of Xi
文摘OBJECTIVE Oleoylethanolamide(OEA) is an endogenous peroxisome proliferatoractivated receptor alpha(PPARα) agonist that acts on the peripheral control of energy metabolism.Previous studies have shown that OEA exerts neuroprotection after cerebral ischemia.However,whether OEA affects the outcomes of diabetes-induced encephalopathy(DE) requires further study.METHODS The chronic effects of OEA on DE were evaluated in C57BL/6 and PPARαknockout mice,individually.The cognitive function was assessed with Morris water maze.The expression of receptor for advanced glycation end products(RAGE) and phosphorylation of Tau in mice hippocampus were determined using Western blotting.The influence of OEA in neuron loss and neuroplasticity were assessed with immunofluorescent staining and Western blotting.RESULTS OEA markedly ameliorated performance in the Morris water maze,which was correlated with its capabilities of suppressing glycometabolism and phosphorylation of Tau in the hippocampus.OEA offered protection from diabetes-induced impairments in hippocampal neuroplasticity.Furthermore,the changes in Morris water maze performance and neuron loss could not be observed in PPARα knockout mouse models with OEA administration.CONCLUSION The ability of OEA to control PPARα signaling can serve as a novel neuroprotective approach for the treatment of diabetes-induced encephalopathy.
基金supported by a grant from the Military "Twelve Five-Year Project"of China(No.CWS12J122)
文摘This study was aimed to investigate the effect of stress induced by high-intensity exercises on the cardiovascular system. In the epidemiological investigation, 200 subjects(test group) engaged in special high-intensity exercises, and 97 who lived and worked in the same environment and conditions as those in the test group, but did not participate in the exercises served as controls. In the second part of the study, 50 mice were randomly divided into control group, exhaustive swimming group, white noise group, exhaustive swimming plus white noise group, and pioglitazone intervention group. The results showed that the plasma concentrations of the myocardial injury markers heart fatty acid-binding protein(H-FABP), C-reactive protein(CRP), β-endorphin(β-EP) and levels of psychological stress were significantly increased in test group as compared with control group; special high-intensity exercises resulted in a significant elevation of the incidence of cardiac arrhythmias. Animal experiments showed that the plasma levels of corticosterone(CORT) and troponin I(Tn I) were raised while the level of SOD was reduced in exhaustive swimming group, white noise group, and exhaustive swimming plus white noise group. The expression levels of PPARγ m RNA and protein were decreased in myocardial tissues in these groups as well. HE staining showed no remarkable change in myocardial tissues in all the groups. Treatment with pioglitazone significantly decreased the plasma levels of Tn I and CORT, while increased the level of SOD and the expression levels of PPARγ m RNA and protein. It was concluded that the high-intensity exercises may induce a heavy physical and psychological stress and predispose the subjects to accumulated fatigue and sleep deprivation; high-intensity exercises also increases the incidence of arrhythmias and myocardial injury. PPARγ may be involved in the physical and psychological changes induced by high-intensity exercises.
基金performed with fund provided by the Oregon Beef Council。
文摘Background: In dairy cows circulating non-esterified fatty acids(NEFA) increase early post-partum while liver and other tissues undergo adaptation to greater lipid metabolism, mainly regulated by peroxisome proliferator-activated receptors(PPAR). PPAR are activated by fatty acids(FA), but it remains to be demonstrated that circulating NEFA or dietary FA activate bovine PPAR. We hypothesized that circulating NEFA and dietary FA activate PPAR in dairy cows.Methods: The dose-response activation of PPAR by NEFA or dietary FA was assessed using HP300 e digital dispenser and luciferase reporter in several bovine cell types. Cells were treated with blood plasma isolated from Jersey cows before and after parturition, NEFA isolated from the blood plasma, FA released from lipoproteins using milk lipoprotein lipase(LPL), and palmitic acid(C16:0). Effect on each PPAR isotype was assessed using specific synthetic inhibitors.Results: NEFA isolated from blood serum activate PPAR linearly up to ~ 4-fold at 400 μmol/L in MAC-T cells but had cytotoxic effect. Addition of albumin to the culture media decreases cytotoxic effects of NEFA but also PPAR activation by ~ 2-fold. Treating cells with serum from peripartum cows reveals that much of the PPAR activation can be explained by the amount of NEFA in the serum(R~2 = 0.91) and that the response to serum NEFA follows a quadratic tendency, with peak activation around 1.4 mmol/L. Analysis of PPAR activation by serum in MAC-T, BFH-12 and BPAEC cells revealed that most of the activation is explained by the activity of PPARδ and PPARγ, but not PPARα. Palmitic acid activated PPAR when added in culture media or blood serum but the activation was limited to PPARδ and PPARα and the response was nil in serum from post-partum cows. The addition of LPL to the serum increased > 1.5-fold PPAR activation.Conclusion: Our results support dose-dependent activation of PPAR by circulating NEFA in bovine, specifically δand γ isotypes. Data also support the possibility of increasing PPAR activation by dietary FA;however, this nutrigenomics approach maybe only effective in pre-partum but not post-partum cows.
文摘Since we had previously demonstrated that siRNAs to tristetraprolin (TTP) markedly inhibited insulin stimulation of hepatic HMG-CoA reductase (HMGR) transcription, we investigated the effects of transfecting rat liver with TTP constructs. We found that transfecting diabetic rats with TTP did not increase HMGR transcription but rather led to modest inhibition. We then investigated whether co-transfection with protein kinase B, hepatic form (AKT2), might lead to phosphorylation and result in activation of HMGR transcription. We found that this treatment resulted in near complete inhibition of transcription. Transfection with peroxisome proliferator-activated receptor g coactivator (PGC-1a) also inhibited HMGR transcription. These results show that although TTP is needed for activation of HMGR transcription, it cannot by itself activate this process. AKT2 and PGC-1a, which mediate the activation of gluconeogenic genes by insulin, exert the opposite effect on HMGR.
文摘Objectives The association of peroxisome prolif-erator -activated receptor delta(PPARD) +294T】C polymorphism and serum lipid levels is inconsistent in several previous studies.Bai Ku Yao is an isolated association of PPARD +294T】C(rs2016520) polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations.Methods A total of 609 subjects of Bai Ku Yao and 573 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples.Genotyping of the PPARD +294T】C polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing.Results The levels of serum total cholesterol(TC),high-density lipoprotein cholesterol(HDL-C),apolipoprotein(Apo) AI and ApoB were lower in Bai Ku Yao than in Han(P【0.001 for all).The frequency of T and C alleles was 77.50%and 22.50%in Bai Ku Yao,and 72.43%and 27.57%in Han (P【0.01);respectively.The frequency of TT,TC and CC genotypes was 60.59%,33.83%and 5.53%in Bai Ku Yao, and 52.18%,40.50%and 7.32%in Han(P【0.05);respectively. The levels of LDL-C,ApoB and the ratio of ApoAI to ApoB in Bai Ku Yao were different among the three genotypes in females but not in males(P【0.05 for all).The subjects with TT and TC genotypes had lower serum LDL-C and ApoB levels and higher the ratio of ApoAI to ApoB than the CC genotype in females.The levels of TC and ApoB in the total Han population were different among the three genotypes (P【0.05 for all).The C allele carriers had higher serum TC and ApoB levels than the C allele noncarriers.When serum lipid levels were analyzed according to sex,the difference in serum TC levels in Han was significant in males(P【0.01) but not in females,whereas the difference in serum ApoB levels was significant in females(P【0.05)but not in males. Serum TC and ApoB levels were correlated with genotypes in Han(P【0.05 for each) but not in Bai Ku Yao.Serum lipid parameters were also correlated with sex,age,body massindex, alcohol consumption,cigarette smoking,and blood pressure in both ethnic groups.Conclusions These results suggest that the association of PPARD +294T】C polymorphism and serum lipid levels is different between the Bai Ku Yao and Han populations.The discrepancy between the two ethnic groups might partly result from different PPARD +294T】C polymorphism or PPARD gene-enviromental interactions,subgroup of the Yao minority in China.
文摘AIM: To investigate whether peroxisome proliferatoractivated receptor γ (PPAR-γ) is expressed in human gastric carcinoma and whether PPAR-γ, is a potential target for gastric carcinoma therapy. METHODS: PPAR-γ protein in gastric carcinoma was examined by immunohistochemistry. In the gastric carcinoma cell line MGCS03, PPAR-7, survivin, Skp2 and p27 protein and mRNA were examined by Western blotting and real-time reverse transcription-polymerase chain reaction, respectively; proliferation was examined by MTT; apoptosis was examined by chromatin staining with Hoechst 33342 and fluorescence activated cell sorting (FACS). and cell cycle was examined by FACS; the knockdown of PPAR-γ was done by RNA interference. RESULTS: A high level of expression of PPAR-γ was observed in human gastric carcinoma and in a human gastric carcinoma cell line MGCS03. The PPAR-γ agonist 15-deoxy-△12,14-prostaglandin J2 (15d-PGJ2)inhibited growth, and induced apoptosis and G1/G0 cell cycle arrest in MGC803 cells in a concentration-dependent and time-dependent manner. The effect of 15d-PGJ2 on MGC803 cells was not reversed by the selective and irreversible antagonist GW9662 for PPAR-γ. Furthermore, survivin and Skp2 expression were decreased, whereas p27 expression was enhanced following 15d-PGJ2 treatment in a dose-dependent manner in MGC803 cells. Interestingly, we also found that small interfering RNA for PPAR-γ inhibited growth and induced apoptosis in MGC803 cells. The inhibition of PPAR-γ function may be a potentially important and novel modality for treatment and prevention of gastric carcinoma. CONCLUSION: A PPAR-γ agonist inhibited growth of human gastric carcinoma MGC803 cells by inducing apoptosis and G1/G0 cell cycle arrest with the involvement of survivin, Skp2 and p27 and not via PPAR-γ.
基金Grants from the State Key Basic Research Program, No. 2002CB513100
文摘AIM: To examine the effect of troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, on the proliferation and apoptosis of human liver cancer cells. METHODS: Liver cancer cell line HepG2 was cultured and treated with troglitazone. Cell proliferation was detected by 3-(4-,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; apoptosis was detected by flow cytometry and terminal deoxynucleotidyl transferase- mediated nick end labeling of DNA fragmentation sites (TUNEL) assay; and apoptosis-related protein was detected by immunocytochemistry and Western blotting. RESULTS: Troglitazone inhibited growth and induced apoptosis of HepG2 cells in a dose-dependent manner, and induced activation of caspase-3 expression. Troglitazone not only drove apoptosis-inhibiting factor survivin to translocate incompletely from the nucleus to the cytoplasm, but also inhibited expression of survivin, while it did not affect expression of apoptosis-promoting factor Bax. CONCLUSION: PPARγ ligands inhibit growth and induce apoptosis of liver cancer cells, and may have applications for the prevention and treatment of liver cancer.