Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands s...Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations have indicated that PSBs formation during fatigue crack initiation is related to the dislocation driving force and interaction. In this paper, a molecular dynamics (MD) simulation associated with embedded atom model (EAM) is applied to the PSBs formation in nickel-base superalloys with different microstructure and temperature under tensile- tensile loadings. Five MD models with different microstructure (pure 5/ phase and γ/γ' phase), grain orientation ([1 0 0][0 1 0][0 0 1] and [1 1 1][1 0 1][1 2 1]) and simulation temperature (300 K, 600 K, 900 K) were built up in these simulations. Our results indicated that within the γ phase by massive dislocations, pile-up and propagation which can penetrate the grain. Also, it is found that the temperature will affect the material fatigue performance and blur PSBs appearance. The simulation results are in strong agreement with published experimental test result. This simulation is based on the work[2]. The highlights of the article include: 1) investigation of the PSB formation via molecular dynamics simulation with three different parameters, 2) conduct of a new deformation and velocity combination controlled simulation for the PSB formation, 3) high-performance computing of PSB formation, and 4) systematic analysis of the PSB formation at the atomic scale in which the dislocation plays a critical role.展开更多
A robust experimental procedure was developed, by which the evolution of fatigue damage in AZ31 magnesium alloy was tracked online with the ultrasonic nonlinearity parameter β. β values of three sets of samples unde...A robust experimental procedure was developed, by which the evolution of fatigue damage in AZ31 magnesium alloy was tracked online with the ultrasonic nonlinearity parameter β. β values of three sets of samples under different stress levels were measured. Microstructures of specimens at different fatigue stages were observed in situ by optical microscopy. The experimental results show that there is a significant increase in β linked to the accumulation of persistent slip bands (PSBs) and micro-cracks at the early stages of fatigue life and reaches the maximum, about 55% of fatigue life. Ultrasonic attenuation coefficient increases with the expanding of micro-cracks and leads to β decrease slightly after 55% of fatigue life. The variation of β with fatigue cycles is in good agreement with the growth of PSBs and micro-cracks. In addition, it has no significant effect on the experimental results for the changes of low- and high-cycle fatigue and the fatigue mode with tension-tension and tension-compression.展开更多
Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, ...Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4 % is up to 15 000 cycles, which is much longer than TRIP780 and HSLAS00 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25 ~. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands.展开更多
基金supported by School of Engineering and Built Environment,Glasgow Caledonian University,National Natural Science Foundation of China(Nos.51405044,51105061 and 11472075)the EPSRC funded ARCHIE-WESt high-performance computer(www.archie-west.ac.uk)(No.EP/K000586/1)
文摘Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations have indicated that PSBs formation during fatigue crack initiation is related to the dislocation driving force and interaction. In this paper, a molecular dynamics (MD) simulation associated with embedded atom model (EAM) is applied to the PSBs formation in nickel-base superalloys with different microstructure and temperature under tensile- tensile loadings. Five MD models with different microstructure (pure 5/ phase and γ/γ' phase), grain orientation ([1 0 0][0 1 0][0 0 1] and [1 1 1][1 0 1][1 2 1]) and simulation temperature (300 K, 600 K, 900 K) were built up in these simulations. Our results indicated that within the γ phase by massive dislocations, pile-up and propagation which can penetrate the grain. Also, it is found that the temperature will affect the material fatigue performance and blur PSBs appearance. The simulation results are in strong agreement with published experimental test result. This simulation is based on the work[2]. The highlights of the article include: 1) investigation of the PSB formation via molecular dynamics simulation with three different parameters, 2) conduct of a new deformation and velocity combination controlled simulation for the PSB formation, 3) high-performance computing of PSB formation, and 4) systematic analysis of the PSB formation at the atomic scale in which the dislocation plays a critical role.
基金Project (KZ200810005001) supported by the Beijing Municipal Natural Science Foundation, ChinaProject (10772008) supported by the National Natural Science Foundation of China
文摘A robust experimental procedure was developed, by which the evolution of fatigue damage in AZ31 magnesium alloy was tracked online with the ultrasonic nonlinearity parameter β. β values of three sets of samples under different stress levels were measured. Microstructures of specimens at different fatigue stages were observed in situ by optical microscopy. The experimental results show that there is a significant increase in β linked to the accumulation of persistent slip bands (PSBs) and micro-cracks at the early stages of fatigue life and reaches the maximum, about 55% of fatigue life. Ultrasonic attenuation coefficient increases with the expanding of micro-cracks and leads to β decrease slightly after 55% of fatigue life. The variation of β with fatigue cycles is in good agreement with the growth of PSBs and micro-cracks. In addition, it has no significant effect on the experimental results for the changes of low- and high-cycle fatigue and the fatigue mode with tension-tension and tension-compression.
基金Sponsored by Fundamental Research Funds for Central Universities of China(FRF-TP-11-005B)
文摘Low cycle fatigue behavior of TWIP (twinning induced plasticity) steel was investigated in axial symmetric tension-compression cyclic loading pattern. Fracture surfaces and microstructures were examined by optical, scanning electron and transmission electron microscopes. It was found that the fatigue life at the strain amplitude of 0.4 % is up to 15 000 cycles, which is much longer than TRIP780 and HSLAS00 steels. The strain hardening and softening features are significant until the strain amplitude comes to 1.25 ~. Persistent slip bands and tiny mechanical twinning layers were observed after fatigue deformation. Deformation mechanism of TWIP steel at low cycle fatigue process is not only twinning, but a complex of both twinning and persistent slip bands.