Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is...Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.展开更多
By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f...By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.展开更多
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experiment...Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.展开更多
Over the past three decades, neurophysiologists studying the neural circuitry responsible for control of skeletal muscles have developed several different general theories of sensorimotor control. These have usually i...Over the past three decades, neurophysiologists studying the neural circuitry responsible for control of skeletal muscles have developed several different general theories of sensorimotor control. These have usually invoked one or more of the sources of proprioceptive signals (e.g. muscle spindle and Golgi tendon organ afferents) in positive or negative feed-back loops to the homonymous alpha motoneurones. In this paper we consider to analyze the role of posi-tive feedback in combination of negative feedback due to important role of them in stabilizing the neu-romuscular system.展开更多
Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive ...Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.展开更多
Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t...Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t) + rf(x(t-1)), where r and μ are positive constants and f : R → R satisfies f(0) = 0 and f' > 0. Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R,R) is such that f''(0) = 0 and f'''(0) < 0, which is weaker than those of Krisztin and Walther.展开更多
This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa...This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.展开更多
The contradiction between profitability requirement of commercial finance and non-profitability nature of inclusive finance inhibits bankers' motivation in providing financial services to farmers,further restricti...The contradiction between profitability requirement of commercial finance and non-profitability nature of inclusive finance inhibits bankers' motivation in providing financial services to farmers,further restricting the already narrow financing channels for low-income rural households and preventing them from jumping out of the poverty trap.There is a mutual promotion relationship between inclusive finance and poverty reduction.On one hand,providing affordable and subsidized financial services to farmers can help them increase income steadily; On the other hand,the institutions reap a good payoff by business expansion,a thick base of loyal clients,as well as public recognition,which in turn stimulates the institutes to provide more financial products,improve their service quality and scale up the investment amount for lowincome farmers.Nevertheless,to set off this positive feedback loop process,a forcible intervention by government is needed.On the base of theoretical analysis and practical research,this article brought related advice for financial institutions in order to promote the development of inclusive finance and alleviate the financing difficulties of farmers households to realize poverty alleviation.展开更多
The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttl...The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.展开更多
A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean current...A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean currents. The ship's parameters were not required to be known. An adaptive observer was first designed to estimate the ship's velocities and parameters. The ship position measurements were also passed through the adaptive observer to reduce high frequency measurement noise from entering the control system. Using these estimate signals, the control was then designed based on Lyapunov's direct method to force the ship's position and orientation to globally asymptotically converge to desired values. Simulation results illustrate the effectiveness of the proposed control system. In conclusion, the paper presented a new method to design an effective control system for dynamic positioning of surface ships.展开更多
The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the dist...The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the disturbance torque of tile load simlilator greatly but also improves its dynamic performance.展开更多
Climate models project a positive Indian Ocean Dipole (plOD)-like SST response in the tropical Indian Ocean to global warming, By employing the Community Earth System Model and applying an overriding technique to it...Climate models project a positive Indian Ocean Dipole (plOD)-like SST response in the tropical Indian Ocean to global warming, By employing the Community Earth System Model and applying an overriding technique to its ocean component (version 2 of the Parallel Ocean Program), this study investigates the similarities and differences of the formation mechanisms for the changes in the tropical Indian Ocean during the plOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, wind-thermocline-SST feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases. Some differences are also fbund, including the fact that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the plOD but by the anomalous upper-ocean stratification under global warming. These findings are lhrther examined through an analysis of the mixed layer heat budget.展开更多
In this paper,in order to stabilize the position and angle of the light source point,a new photon beam position feedback system based on the Photon Beam Position Monitors was developed on Hefei Light Source,and used t...In this paper,in order to stabilize the position and angle of the light source point,a new photon beam position feedback system based on the Photon Beam Position Monitors was developed on Hefei Light Source,and used to correct the position drift and angle variation of the light source at the same time.On introducing the feedback principle,the transfer function matrix is calibrated,indicating that the new system is workable and effective.展开更多
This paper investigates the positive real control problem for uncertain descriptor systems. The parametric uncertainty is assumed to be norm bounded. Firstly, for the nominal system, a new positive real characterizati...This paper investigates the positive real control problem for uncertain descriptor systems. The parametric uncertainty is assumed to be norm bounded. Firstly, for the nominal system, a new positive real characterization is given, which is expressed by a strict linear matrix mequality(LMI) without equality constraints. Secondly, for the uncertain system, necessary and sufficient conditions for the solvability of the positive real control problem are derived. Based on these conditions a state feedback law is obtained, which renders the resultant closed-loop system robustly positive real.展开更多
This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface ...This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface device while observing work of the robot with a video camera. We also investigate the effect of the proposed control by experiment. As cooperative work, we deal with work in which two robots carry an object together. The robot position control using force information finely adjusts the position of the robot arm to reduce the force applied to the object. Thus, the purpose of the control is to avoid large force so that the object is not broken. In our experiment, we make a comparison among the following three cases in order to clarify how to carry out the control effectively. In the first case, the two robots are operated manually by a user with his/her both hands. In the second case, one robot is operated manually by a user, and the other robot is moved automatically under the proposed control. In the last case, the object is carried directly by a human instead of the robot which is operated by the user in the second case. As a result, experimental results demonstrate that the control can help each system operated manually by the user to carry the object smoothly.展开更多
There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The c...There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.展开更多
This paper concerns the position optimization problem of a mobile relay over a whole horizontal plane.This problem is important because the position of a mobile relay directly affects the end-to-end performance,e.g.,r...This paper concerns the position optimization problem of a mobile relay over a whole horizontal plane.This problem is important because the position of a mobile relay directly affects the end-to-end performance,e.g.,reliability,connectivity,and data rate.In this paper,we propose a new position optimization scheme of a mobile relay over a whole horizontal plane based on the one-bit feedback information from the destination node,which improves the performance over the prior scheme whose position of the mobile relay is optimized over a fixed orbit.In the proposed scheme,the mobile relay is equipped with merely one single onboard antenna.Moreover,no prior information about the positions of both the source node and the destination node is required.Thus,the proposed scheme can work at low network resources scenario,which is particularly suitable for mobile relay communication with constrained energy,e.g.,the communications in a disaster area where the infrastructure is heavily damaged,volcano monitoring,and wireless powered communication networking.According to the characteristics of the proposed scheme,we further design two heuristic implementations to calculate the optimal position of a mobile relay over a whole horizontal plane.The first implementation has better steady performance whereas the second implementation has better convergence speed.We implement the proposed scheme and conduct an extensive performance comparison between the proposed scheme and prior schemes to verify the advantages of the proposed scheme.展开更多
基金The project supported by Education Department of Jiangsu Province of China under Grant No. 06KJD140111
文摘Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.
基金Supported by the National Natural Sciences Foundation of China(10361006)Supported by the Natural Sciences Foundation of Yunnan Province(2003A0001M)Supported by the Jiangsu "Qing-lanProject" for Excellent Young Teachers in University(2006)
文摘By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.
基金supported by the Key Project (11132001)the General Projects of the National Natural Science Foundation of China (11072146, 11002087)
文摘Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.
文摘Over the past three decades, neurophysiologists studying the neural circuitry responsible for control of skeletal muscles have developed several different general theories of sensorimotor control. These have usually invoked one or more of the sources of proprioceptive signals (e.g. muscle spindle and Golgi tendon organ afferents) in positive or negative feed-back loops to the homonymous alpha motoneurones. In this paper we consider to analyze the role of posi-tive feedback in combination of negative feedback due to important role of them in stabilizing the neu-romuscular system.
基金the Natural Science Foundation of Jiangsu Province,China(Grant No.20KJB470030).
文摘Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.
基金The start-up funds of Wilfrid Laurier University of Canada, the NNSF (10071016) of Chinathe Doctor Program Foundation (20010532002) of Chinese Ministry of Education the Key Project of Chinese Ministry of Education ([2002]78) and the
文摘Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t) + rf(x(t-1)), where r and μ are positive constants and f : R → R satisfies f(0) = 0 and f' > 0. Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R,R) is such that f''(0) = 0 and f'''(0) < 0, which is weaker than those of Krisztin and Walther.
文摘This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.
文摘The contradiction between profitability requirement of commercial finance and non-profitability nature of inclusive finance inhibits bankers' motivation in providing financial services to farmers,further restricting the already narrow financing channels for low-income rural households and preventing them from jumping out of the poverty trap.There is a mutual promotion relationship between inclusive finance and poverty reduction.On one hand,providing affordable and subsidized financial services to farmers can help them increase income steadily; On the other hand,the institutions reap a good payoff by business expansion,a thick base of loyal clients,as well as public recognition,which in turn stimulates the institutes to provide more financial products,improve their service quality and scale up the investment amount for lowincome farmers.Nevertheless,to set off this positive feedback loop process,a forcible intervention by government is needed.On the base of theoretical analysis and practical research,this article brought related advice for financial institutions in order to promote the development of inclusive finance and alleviate the financing difficulties of farmers households to realize poverty alleviation.
基金Supported by National Natural Science Foundation of China(Grant No.51805350)Key Technologies Research and Development Program of China(Grant No.2018YFB2001202)+1 种基金Natural Science Foundation of Shanxi Province of China(Grant No.201801D221226)Postdoctoral Science Foundation of China(Grant No.2019M651073).
文摘The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.
文摘A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean currents. The ship's parameters were not required to be known. An adaptive observer was first designed to estimate the ship's velocities and parameters. The ship position measurements were also passed through the adaptive observer to reduce high frequency measurement noise from entering the control system. Using these estimate signals, the control was then designed based on Lyapunov's direct method to force the ship's position and orientation to globally asymptotically converge to desired values. Simulation results illustrate the effectiveness of the proposed control system. In conclusion, the paper presented a new method to design an effective control system for dynamic positioning of surface ships.
文摘The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the disturbance torque of tile load simlilator greatly but also improves its dynamic performance.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955600)the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA11010302)+3 种基金the National Natural Science Foundation of China (Grant No. 41376009)the Joint Program of Shandong Province and National Natural Science Foundation of China (Grant No. U1406401)the National Science Foundation (Grant No. AGS-1249173)supported by the Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling program
文摘Climate models project a positive Indian Ocean Dipole (plOD)-like SST response in the tropical Indian Ocean to global warming, By employing the Community Earth System Model and applying an overriding technique to its ocean component (version 2 of the Parallel Ocean Program), this study investigates the similarities and differences of the formation mechanisms for the changes in the tropical Indian Ocean during the plOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, wind-thermocline-SST feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases. Some differences are also fbund, including the fact that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the plOD but by the anomalous upper-ocean stratification under global warming. These findings are lhrther examined through an analysis of the mixed layer heat budget.
基金Supported by National Natural Science Foundation of China(No.10675118,and No.11175173)
文摘In this paper,in order to stabilize the position and angle of the light source point,a new photon beam position feedback system based on the Photon Beam Position Monitors was developed on Hefei Light Source,and used to correct the position drift and angle variation of the light source at the same time.On introducing the feedback principle,the transfer function matrix is calibrated,indicating that the new system is workable and effective.
文摘This paper investigates the positive real control problem for uncertain descriptor systems. The parametric uncertainty is assumed to be norm bounded. Firstly, for the nominal system, a new positive real characterization is given, which is expressed by a strict linear matrix mequality(LMI) without equality constraints. Secondly, for the uncertain system, necessary and sufficient conditions for the solvability of the positive real control problem are derived. Based on these conditions a state feedback law is obtained, which renders the resultant closed-loop system robustly positive real.
文摘This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface device while observing work of the robot with a video camera. We also investigate the effect of the proposed control by experiment. As cooperative work, we deal with work in which two robots carry an object together. The robot position control using force information finely adjusts the position of the robot arm to reduce the force applied to the object. Thus, the purpose of the control is to avoid large force so that the object is not broken. In our experiment, we make a comparison among the following three cases in order to clarify how to carry out the control effectively. In the first case, the two robots are operated manually by a user with his/her both hands. In the second case, one robot is operated manually by a user, and the other robot is moved automatically under the proposed control. In the last case, the object is carried directly by a human instead of the robot which is operated by the user in the second case. As a result, experimental results demonstrate that the control can help each system operated manually by the user to carry the object smoothly.
文摘There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.
基金partially supported by the Natural Science Foundation of China(No.61972262)Natural Science Foundation of Guangdong,China(No.2021A1515011344)+2 种基金Key Project of Education Ministry of Guangdong Province(No.2021ZDZX3001)Fundamental Research Programs of Shenzhen City(No.JCYJ20210324093809024,No.JCYJ20180305124648757)China Scholarship Council(No.201908440031).
文摘This paper concerns the position optimization problem of a mobile relay over a whole horizontal plane.This problem is important because the position of a mobile relay directly affects the end-to-end performance,e.g.,reliability,connectivity,and data rate.In this paper,we propose a new position optimization scheme of a mobile relay over a whole horizontal plane based on the one-bit feedback information from the destination node,which improves the performance over the prior scheme whose position of the mobile relay is optimized over a fixed orbit.In the proposed scheme,the mobile relay is equipped with merely one single onboard antenna.Moreover,no prior information about the positions of both the source node and the destination node is required.Thus,the proposed scheme can work at low network resources scenario,which is particularly suitable for mobile relay communication with constrained energy,e.g.,the communications in a disaster area where the infrastructure is heavily damaged,volcano monitoring,and wireless powered communication networking.According to the characteristics of the proposed scheme,we further design two heuristic implementations to calculate the optimal position of a mobile relay over a whole horizontal plane.The first implementation has better steady performance whereas the second implementation has better convergence speed.We implement the proposed scheme and conduct an extensive performance comparison between the proposed scheme and prior schemes to verify the advantages of the proposed scheme.