期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MAIPFE:An Efficient Multimodal Approach Integrating Pre-Emptive Analysis,Personalized Feature Selection,and Explainable AI
1
作者 Moshe Dayan Sirapangi S.Gopikrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2229-2251,共23页
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu... Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world. 展开更多
关键词 Predictive health modeling Medical Internet of Things explainable artificial intelligence personalized feature selection preemptive analysis
下载PDF
Item Cold-Start Recommendation with Personalized Feature Selection 被引量:1
2
作者 Yi-Fan Chen Xiang Zhao +2 位作者 Jin-Yuan Liu Bin Ge Wei-Ming Zhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第5期1217-1230,共14页
The problem of recommending new items to users(often referred to as item cold-start recommendation)remains a challenge due to the absence of users’past preferences for these items.Item features from side information ... The problem of recommending new items to users(often referred to as item cold-start recommendation)remains a challenge due to the absence of users’past preferences for these items.Item features from side information are typically leveraged to tackle the problem.Existing methods formulate regression methods,taking item features as input and user ratings as output.These methods are confronted with the issue of overfitting when item features are high-dimensional,which greatly impedes the recommendation experience.Availing of high-dimensional item features,in this work,we opt for feature selection to solve the problem of recommending top-N new items.Existing feature selection methods find a common set of features for all users,which fails to differentiate users1 preferences over item features.To personalize feature selection,we propose to select item features discriminately for different users.We study the personalization of feature selection at the level of the user or user group.We fulfill the task by proposing two embedded feature selection models.The process of personalized feature selection filters out the dimensions that are irrelevant to recommendations or unappealing to users.Experimental results on real-life datasets with high-dimensional side information reveal that the proposed method is effective in singling out features that are crucial to top-N recommendation and hence improving performance. 展开更多
关键词 high-dimensionality item cold-start top-TV recommendation personalized feature selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部