Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Da...Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms,which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases.Importantly,integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile.In this review,we first summarize data mining studies utilizing datasets from the individual type of omics analysis,including epigenetics/epigenomics,transcriptomics,proteomics,metabolomics,lipidomics,and spatial omics,pertaining to Alzheimer's disease,Parkinson's disease,and multiple sclerosis.We then discuss multi-omics integration approaches,including independent biological integration and unsupervised integration methods,for more intuitive and informative interpretation of the biological data obtained across different omics layers.We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks.Finally,we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery,therapeutic development,and elucidation of disease mechanisms.We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.展开更多
Personalized medicine is defined as "a model of healthcare that is predictive, personalized, preventive,and participator" and has very broad content. With the rapid development of high-throughput technologies, an ex...Personalized medicine is defined as "a model of healthcare that is predictive, personalized, preventive,and participator" and has very broad content. With the rapid development of high-throughput technologies, an explosive accumulation of biological information is collected from multiple layers of biological processes, including genomics, transcriptomics, proteomics, metabonomics, and interactomics(omics). Implementing integrative analysis of these multiple omics data is the best way of deriving systematical and comprehensive views of living organisms, achieving better understanding of disease mechanisms, and finding operable personalized health treatments. With the help of computational methods, research in the field of biology and biomedicine has gained tremendous benefits over the past few decades. In the new era of personalized medicine, we will rely more on the assistance of computational analysis. In this paper, we briefly review the generation of multiple omics and their basic characteristics. And then the challenges and opportunities for computational analysis are discussed and some state-of-art analysis methods that were recently proposed by peers for integrative analysis of multiple omics data are reviewed. We foresee that further integrated omics data platform and computational tools would help to translate the biological knowledge to clinical usage and accelerate development of personalized medicine.展开更多
Chinese integrative medicine (CIM) focuses on the integration of conventional medicine (biomedicine) with Chinese medicine (CM). Although the CIM field has witnessed several advancements, the definition and clas...Chinese integrative medicine (CIM) focuses on the integration of conventional medicine (biomedicine) with Chinese medicine (CM). Although the CIM field has witnessed several advancements, the definition and classification of CIM is not quite clear, given that an independent theory system has not yet been established in this field. Therefore, future research and studies should focus on the following objectives: (1) emphasizing CM features, (2) improving CIM positioning, and (3) establishing CIM standards. These concerted efforts will help CIM be at par with international standards and criteria. With the development of CIM, the world will embrace a new medical system providing person-cantered treatment with a balanced medicine approach.展开更多
Though a relatively young discipline, translational bioinformatics (TBI) has become a key component of biomedical research in the era of precision medicine. Development of high-throughput technologies and electronic...Though a relatively young discipline, translational bioinformatics (TBI) has become a key component of biomedical research in the era of precision medicine. Development of high-throughput technologies and electronic health records has caused a paradigm shift in both healthcare and biomedical research. Novel tools and methods are required to convert increasingly voluminous datasets into information and actionable knowledge. This review provides a definition and contex- tualization of the term TBI, describes the discipline's brief history and past accomplishments, as well as current loci, and concludes with predictions of future directions in the field.展开更多
基金supported by a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship(021207-00001)from Nanyang Technological University(NTU)Singapore and a Mistletoe Research Fellowship(022522-00001)from the Momental Foundation USA.Jialiu Zeng is supported by a Presidential Postdoctoral Fellowship(021229-00001)from NTU Singapore and an Open Fund Young Investigator Research Grant(OF-YIRG)(MOH-001147)from the National Medical Research Council(NMRC)SingaporeSu Bin Lim is supported by the National Research Foundation(NRF)of Korea(Grant Nos.:2020R1A6A1A03043539,2020M3A9D8037604,2022R1C1C1004756)a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(Grant No.:HR22C1734).
文摘Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms,which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases.Importantly,integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile.In this review,we first summarize data mining studies utilizing datasets from the individual type of omics analysis,including epigenetics/epigenomics,transcriptomics,proteomics,metabolomics,lipidomics,and spatial omics,pertaining to Alzheimer's disease,Parkinson's disease,and multiple sclerosis.We then discuss multi-omics integration approaches,including independent biological integration and unsupervised integration methods,for more intuitive and informative interpretation of the biological data obtained across different omics layers.We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks.Finally,we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery,therapeutic development,and elucidation of disease mechanisms.We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.
基金supported by the Project for the Innovation Team of Beijing, the National Natural Science Foundation of China (No. 81370038)the Beijing Natural Science Foundation (No. 7142012)+2 种基金the Science and Technology Project of Beijing Municipal Education Commission (No. km201410005003)the Rixin Fund of Beijing University of Technology (No. 2013-RX-L04)the Basic Research Fund of Beijing University of Technology
文摘Personalized medicine is defined as "a model of healthcare that is predictive, personalized, preventive,and participator" and has very broad content. With the rapid development of high-throughput technologies, an explosive accumulation of biological information is collected from multiple layers of biological processes, including genomics, transcriptomics, proteomics, metabonomics, and interactomics(omics). Implementing integrative analysis of these multiple omics data is the best way of deriving systematical and comprehensive views of living organisms, achieving better understanding of disease mechanisms, and finding operable personalized health treatments. With the help of computational methods, research in the field of biology and biomedicine has gained tremendous benefits over the past few decades. In the new era of personalized medicine, we will rely more on the assistance of computational analysis. In this paper, we briefly review the generation of multiple omics and their basic characteristics. And then the challenges and opportunities for computational analysis are discussed and some state-of-art analysis methods that were recently proposed by peers for integrative analysis of multiple omics data are reviewed. We foresee that further integrated omics data platform and computational tools would help to translate the biological knowledge to clinical usage and accelerate development of personalized medicine.
文摘Chinese integrative medicine (CIM) focuses on the integration of conventional medicine (biomedicine) with Chinese medicine (CM). Although the CIM field has witnessed several advancements, the definition and classification of CIM is not quite clear, given that an independent theory system has not yet been established in this field. Therefore, future research and studies should focus on the following objectives: (1) emphasizing CM features, (2) improving CIM positioning, and (3) establishing CIM standards. These concerted efforts will help CIM be at par with international standards and criteria. With the development of CIM, the world will embrace a new medical system providing person-cantered treatment with a balanced medicine approach.
基金supported in part by the Clinical and Translational Science Award(Grant No.UL1TR001117)to Duke University from the National Institutes of Health(NIH),United States
文摘Though a relatively young discipline, translational bioinformatics (TBI) has become a key component of biomedical research in the era of precision medicine. Development of high-throughput technologies and electronic health records has caused a paradigm shift in both healthcare and biomedical research. Novel tools and methods are required to convert increasingly voluminous datasets into information and actionable knowledge. This review provides a definition and contex- tualization of the term TBI, describes the discipline's brief history and past accomplishments, as well as current loci, and concludes with predictions of future directions in the field.