With the rapid development of the new generation of information technology,the analysis of mobile social network big data is getting deeper and deeper.At the same time,the risk of privacy disclosure in social network ...With the rapid development of the new generation of information technology,the analysis of mobile social network big data is getting deeper and deeper.At the same time,the risk of privacy disclosure in social network is also very obvious.In this paper,we summarize the main access control model in mobile social network,analyze their contribution and point out their disadvantages.On this basis,a practical privacy policy is defined through authorization model supporting personalized privacy preferences.Experiments have been conducted on synthetic data sets.The result shows that the proposed privacy protecting model could improve the security of the mobile social network while keeping high execution efficiency.展开更多
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders...With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.展开更多
COVID-19 has swept the whole our country and the world in the beginning of 2020.31 provinces and municipalities across the country have launched the first-level response to major public health emergencies since Januar...COVID-19 has swept the whole our country and the world in the beginning of 2020.31 provinces and municipalities across the country have launched the first-level response to major public health emergencies since January 24,and China has carried out intensive epidemic control.It is critical for effectively responding to COVID-19 to collect,collate and analyze people’s personal data.What’s more,obtaining identity information,travel records and health information of confirmed cases,suspected cases and close contacts has become a crucial step in epidemic investigation.All regions have made full use of big data to carry out personnel screening,travel records analysis and other related work in epidemic prevention and control,effectively improving the efficiency of epidemic prevention and control.However,data leakage,personnel privacy data exposure,and personal attack frequently occurred in the process of personnel travel records analysis and epidemic prevention and control.It even happened in the WeChat group to forward a person’s name,phone number,address,ID number and other sensitive information.It brought discrimination,telephone and SMS harassment to the parties,which caused great harm to individuals.Based on these,lack of information security and data security awareness and other issues were exposed.Therefore,while big data has been widely concerned and applied,attention should be paid to protecting personal privacy.It is urgent to pay more attention to data privacy and information security in order to effectively protect the legitimate rights of the people.Therefore,measures can be taken to achieve this goal,such as improving the relevant legal system,strengthening technical means to enhance the supervision and management of information security and data protection.展开更多
The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of Smart Healthcare Networks(SHNs).To enhance the precision of diagnosis,different participants in SHNs ...The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of Smart Healthcare Networks(SHNs).To enhance the precision of diagnosis,different participants in SHNs share health data that contain sensitive information.Therefore,the data exchange process raises privacy concerns,especially when the integration of health data from multiple sources(linkage attack)results in further leakage.Linkage attack is a type of dominant attack in the privacy domain,which can leverage various data sources for private data mining.Furthermore,adversaries launch poisoning attacks to falsify the health data,which leads to misdiagnosing or even physical damage.To protect private health data,we propose a personalized differential privacy model based on the trust levels among users.The trust is evaluated by a defined community density,while the corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy.To avoid linkage attacks in personalized differential privacy,we design a noise correlation decoupling mechanism using a Markov stochastic process.In addition,we build the community model on a blockchain,which can mitigate the risk of poisoning attacks during differentially private data transmission over SHNs.Extensive experiments and analysis on real-world datasets have testified the proposed model,and achieved better performance compared with existing research from perspectives of privacy protection and effectiveness.展开更多
The fast development of the Internet and mobile devices results in a crowdsensing business model,where individuals(users)are willing to contribute their data to help the institution(data collector)analyze and release ...The fast development of the Internet and mobile devices results in a crowdsensing business model,where individuals(users)are willing to contribute their data to help the institution(data collector)analyze and release useful information.However,the reveal of personal data will bring huge privacy threats to users,which will impede the wide application of the crowdsensing model.To settle the problem,the definition of local differential privacy(LDP)is proposed.Afterwards,to respond to the varied privacy preference of users,resear-chers propose a new model,i.e.,personalized local differential privacy(PLDP),which allow users to specify their own privacy parameters.In this paper,we focus on a basic task of calculating the mean value over a single numeric attribute with PLDP.Based on the previous schemes for mean estimation under LDP,we employ PLDP model to design novel schemes(LAP,DCP,PWP)to provide personalized privacy for each user.We then theoretically analysis the worst-case variance of three proposed schemes and conduct experiments on synthetic and real datasets to evaluate the performance of three methods.The theoretical and experimental results show the optimality of PWP in the low privacy regime and a slight advantage of DCP in the high privacy regime.展开更多
the age of artificial intelligence(AI),robots have profoundly impacted our life and work,and have challenged our civil legal system.In the course of Al development,robots need to be designed to protect our personal pr...the age of artificial intelligence(AI),robots have profoundly impacted our life and work,and have challenged our civil legal system.In the course of Al development,robots need to be designed to protect our personal privacy,data privacy,intellectual property rights,and tort liability identification and determination.In addition,China needs an updated Civil Code in line with the growth of AIl.All measures should aim to address AI challenges and also to provide the needed institutional space for the development of AI and other emerging technologies.展开更多
基金We thank the anonymous reviewers and editors for their very constructive comments.This work was supported by the National Social Science Foundation Project of China under Grant 16BTQ085.
文摘With the rapid development of the new generation of information technology,the analysis of mobile social network big data is getting deeper and deeper.At the same time,the risk of privacy disclosure in social network is also very obvious.In this paper,we summarize the main access control model in mobile social network,analyze their contribution and point out their disadvantages.On this basis,a practical privacy policy is defined through authorization model supporting personalized privacy preferences.Experiments have been conducted on synthetic data sets.The result shows that the proposed privacy protecting model could improve the security of the mobile social network while keeping high execution efficiency.
基金supported in part by the National Natural Science Foundation of China under Grant U1905211,Grant 61872088,Grant 62072109,Grant 61872090,and Grant U1804263in part by the Guangxi Key Laboratory of Trusted Software under Grant KX202042+3 种基金in part by the Science and Technology Major Support Program of Guizhou Province under Grant 20183001in part by the Science and Technology Program of Guizhou Province under Grant 20191098in part by the Project of High-level Innovative Talents of Guizhou Province under Grant 20206008in part by the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province under Grant ZCL21015.
文摘With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.
基金This paper is support by:In 2019,Liaoning Provincial Department of Education Project named“Study on the Path Selection of Rural Revitalization in Ethnic Autonomous Areas of Liaoning Province”The 3rd Azure Talent Project of Dalian Ocean University in 2018+1 种基金In 2019,Liaoning Province’s overseas training project“China-Canada Cooperation Research Plan on Marine Law and Policy”(2019GJWYB019)The Ministry of Education filed the 2017 National and Regional Research Center Project“Northeast Asia Research Center for Marine Law and Policy”(GQ17091).
文摘COVID-19 has swept the whole our country and the world in the beginning of 2020.31 provinces and municipalities across the country have launched the first-level response to major public health emergencies since January 24,and China has carried out intensive epidemic control.It is critical for effectively responding to COVID-19 to collect,collate and analyze people’s personal data.What’s more,obtaining identity information,travel records and health information of confirmed cases,suspected cases and close contacts has become a crucial step in epidemic investigation.All regions have made full use of big data to carry out personnel screening,travel records analysis and other related work in epidemic prevention and control,effectively improving the efficiency of epidemic prevention and control.However,data leakage,personnel privacy data exposure,and personal attack frequently occurred in the process of personnel travel records analysis and epidemic prevention and control.It even happened in the WeChat group to forward a person’s name,phone number,address,ID number and other sensitive information.It brought discrimination,telephone and SMS harassment to the parties,which caused great harm to individuals.Based on these,lack of information security and data security awareness and other issues were exposed.Therefore,while big data has been widely concerned and applied,attention should be paid to protecting personal privacy.It is urgent to pay more attention to data privacy and information security in order to effectively protect the legitimate rights of the people.Therefore,measures can be taken to achieve this goal,such as improving the relevant legal system,strengthening technical means to enhance the supervision and management of information security and data protection.
基金supported by the National Key Research and Development Program of China(No.2021YFF0900400).
文摘The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of Smart Healthcare Networks(SHNs).To enhance the precision of diagnosis,different participants in SHNs share health data that contain sensitive information.Therefore,the data exchange process raises privacy concerns,especially when the integration of health data from multiple sources(linkage attack)results in further leakage.Linkage attack is a type of dominant attack in the privacy domain,which can leverage various data sources for private data mining.Furthermore,adversaries launch poisoning attacks to falsify the health data,which leads to misdiagnosing or even physical damage.To protect private health data,we propose a personalized differential privacy model based on the trust levels among users.The trust is evaluated by a defined community density,while the corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy.To avoid linkage attacks in personalized differential privacy,we design a noise correlation decoupling mechanism using a Markov stochastic process.In addition,we build the community model on a blockchain,which can mitigate the risk of poisoning attacks during differentially private data transmission over SHNs.Extensive experiments and analysis on real-world datasets have testified the proposed model,and achieved better performance compared with existing research from perspectives of privacy protection and effectiveness.
基金the National Key Research and Development Program of China(2020YFB1005900)the Research Fund of Guangxi Key Laboratory of Trusted Software(kx202034)+1 种基金the Team Project of Collaborative Innovation in Universities of Gansu Province(2017C-16)Collaborative Innovation Center of Novel Software Technology and Industrialization.
文摘The fast development of the Internet and mobile devices results in a crowdsensing business model,where individuals(users)are willing to contribute their data to help the institution(data collector)analyze and release useful information.However,the reveal of personal data will bring huge privacy threats to users,which will impede the wide application of the crowdsensing model.To settle the problem,the definition of local differential privacy(LDP)is proposed.Afterwards,to respond to the varied privacy preference of users,resear-chers propose a new model,i.e.,personalized local differential privacy(PLDP),which allow users to specify their own privacy parameters.In this paper,we focus on a basic task of calculating the mean value over a single numeric attribute with PLDP.Based on the previous schemes for mean estimation under LDP,we employ PLDP model to design novel schemes(LAP,DCP,PWP)to provide personalized privacy for each user.We then theoretically analysis the worst-case variance of three proposed schemes and conduct experiments on synthetic and real datasets to evaluate the performance of three methods.The theoretical and experimental results show the optimality of PWP in the low privacy regime and a slight advantage of DCP in the high privacy regime.
文摘the age of artificial intelligence(AI),robots have profoundly impacted our life and work,and have challenged our civil legal system.In the course of Al development,robots need to be designed to protect our personal privacy,data privacy,intellectual property rights,and tort liability identification and determination.In addition,China needs an updated Civil Code in line with the growth of AIl.All measures should aim to address AI challenges and also to provide the needed institutional space for the development of AI and other emerging technologies.